
WebSphere® IBM WebSphere Real Time V2 for Linux
Version 2

User Guide

����

WebSphere® IBM WebSphere Real Time V2 for Linux
Version 2

User Guide

����

Note
Before using this information and the product it supports, read the information in “Notices” on page 245.

Sixth Edition (April 2010)

This edition of the user guide applies to IBM WebSphere Real Time, Version 2, and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Preface ix

Chapter 1. Introduction 1
Overview of WebSphere Real Time for Linux . . . 1
What's new 2
Benefits 2
Considerations. 3

Performance considerations 3
Security considerations for the shared class cache 4

Chapter 2. Installing WebSphere Real
Time for Linux 7
Installation files 7
Hardware and software prerequisites 7
Useful tools. 8
Unpacking the WebSphere Real Time for Linux
gzipped tar file 8
Setting the path 9
Setting the classpath 9
Testing your installation 10
Viewing the online help 10

Chapter 3. Thread scheduling and
dispatching. 13
Regular Java thread priorities and policies 14

Configuring the system to allow priority changes 15
Launching secondary processes. 17

Chapter 4. Using the Metronome
Garbage Collector 19
Introduction to the Metronome Garbage Collector 19
Troubleshooting the Metronome Garbage Collector 20

Using verbose:gc information 20
Metronome Garbage Collector behavior in
out-of-memory conditions 25
Metronome Garbage Collector behavior on
explicit System.gc() calls 25

Metronome Garbage Collector limitation 25

Chapter 5. The sample real-time hash
map 27

Chapter 6. Troubleshooting
OutOfMemory Errors. 29
Diagnosing OutOfMemoryErrors 29

How the IBM JVM manages memory. 32

Chapter 7. Problem determination . . . 35

First steps in problem determination 35
Problem determination 36

Setting up and checking your Linux environment 36
General debugging techniques 38
Diagnosing crashes 45
Debugging hangs 46
Debugging memory leaks 46
Debugging performance problems 46
MustGather information for Linux. 49
Known limitations on Linux 51

ORB problem determination 53
Identifying an ORB problem. 54
Debug properties 55
ORB exceptions 55
Completion status and minor codes 57
Java security permissions for the ORB 57
Interpreting the stack trace 58
Interpreting ORB traces 59
Common problems 62
IBM ORB service: collecting data 65

NLS problem determination 66
Overview of fonts 66
Font utilities 67
Common NLS problem and possible causes . . 67

Attach API problem determination 68

Chapter 8. Using diagnostic tools . . . 71
Using dump agents. 71

Using the -Xdump option 71
Dump agents 74
Dump events 76
Advanced control of dump agents 77
Dump agent tokens. 81
Default dump agents 82
Removing dump agents 83
Dump agent environment variables 83
Signal mappings. 84
Dump agent default locations 85
Disabling dump agents with -Xrs 85

Using Javadump. 85
Enabling a Javadump 86
Triggering a Javadump 86
Interpreting a Javadump 87
Environment variables and Javadump 97

Using Heapdump 98
Getting Heapdumps 98
Available tools for processing Heapdumps . . . 99
Using -Xverbose:gc to obtain heap information 99
Environment variables and Heapdump 99
Text (classic) Heapdump file format 100

Using system dumps and the dump viewer . . . 102
Overview of system dumps 103
System dump defaults 103
Using the dump viewer 104

Tracing Java applications and the JVM 118

© Copyright IBM Corp. 2003, 2010 iii

|
||
||
||
||

What can be traced? 118
Types of tracepoint 119
Default tracing 119
Where does the data go? 120
Controlling the trace 122
Using the trace formatter 139
Determining the tracepoint ID of a tracepoint 140
Application trace 141
Using method trace 144

JIT and AOT problem determination 150
Diagnosing a JIT or AOT problem 150
Performance of short-running applications . . 155
JVM behavior during idle periods 155

The Diagnostics Collector 155
Using the Diagnostics Collector 155
Using the -Xdiagnosticscollector option. . . . 156
Collecting diagnostics from Java runtime
problems 156
Verifying your Java diagnostics configuration 157
Configuring the Diagnostics Collector 158
Known limitations. 159

Garbage Collector diagnostics 160
Shared classes diagnostics 160

Deploying shared classes 160
Dealing with runtime bytecode modification 167
Understanding dynamic updates 170
Using the Java Helper API 172
Understanding shared classes diagnostics output 175
Debugging problems with shared classes . . . 179
Class sharing with OSGi ClassLoading
framework 183

Using the JVMTI 183
IBM JVMTI extensions 184
IBM JVMTI extensions - API reference 186

Using the Diagnostic Tool Framework for Java . . 190
Using the DTFJ interface 191
DTFJ example application 194

Using the IBM Monitoring and Diagnostic Tools for
Java - Health Center 196

Introduction 196
Platform requirements 198
Monitoring a running Java application 199
Saving data 208
Opening files from disk 208
Classes perspective 209
Environment perspective 210
Garbage collection perspective. 211
I/O perspective 214
Locking perspective 215
Native memory perspective 218
Profiling perspective 218
WebSphere Real Time perspective 222
Troubleshooting 227
Resetting displayed data 232
Cropping data 232
Controlling the units 233
Filtering 233
Performance hints 234

Chapter 9. Reference 235
Real Time specific options 235

Specifying command-line options. 235
Standard options 235
Nonstandard garbage collection options . . . 237
Other nonstandard options 238

System properties 241
Default settings for the JVM 242

Notices 245
Trademarks 246

Index 249

iv WebSphere Real Time V2 for Linux: User Guide

Figures

1. MDD4J has analyzed the heapdump and
determined that there is a leak suspect . . . 31

2. MDD4J shows the heap objects of the leak
suspect 32

3. DTFJ interface diagram 193

© Copyright IBM Corp. 2003, 2010 v

vi WebSphere Real Time V2 for Linux: User Guide

Tables

1. System administrators' tasks 1
2. Service personnel tasks 1
3. Java and operating system priorities 14
4. 16
5. New thread names in WebSphere Real Time

for Linux 93

6. Monitors table 216
7. Memory information values. 218
8. Interpreting the meaning of a determinism

score 226

© Copyright IBM Corp. 2003, 2010 vii

||
||

viii WebSphere Real Time V2 for Linux: User Guide

Preface

This user guide provides general information about IBM® WebSphere® Real Time
for Linux®.

© Copyright IBM Corp. 2003, 2010 ix

x WebSphere Real Time V2 for Linux: User Guide

Chapter 1. Introduction

This information center describes the IBM WebSphere Real Time for Linux product
referred to as WebSphere Real Time for Linux in this information.

You can use this information to install and configure WebSphere Real Time for
Linux. Selected information about non-Real-Time Java™ is also provided here. See
the Diagnostics Guide for further diagnostic information.

Viewing the information center

To use the information center on your local workstation, you must install the
Eclipse Help system; see “Viewing the online help” on page 10. You can also copy
the jar file to the plug-in directory of Eclipse SDK and view the information center
using Help → Help Contents.

Who should read this information

Readers of this information fall into one of the following groups:
v System administrators who install and configure the Java environment; see

Table 1.
v Service personnel team who maintain the Java environment; see Table 2.

Table 1. System administrators' tasks

Task Reference

Planning for and overseeing product
installation.

Chapter 2, “Installing WebSphere Real Time for
Linux,” on page 7

Table 2. Service personnel tasks

Task Reference

Troubleshooting system and
performance problems.

Chapter 6, “Troubleshooting OutOfMemory
Errors,” on page 29

Diagnosing problems. “First steps in problem determination” on page
35

Overview of WebSphere Real Time for Linux
WebSphere Real Time for Linux bundles real-time capabilities with the standard
JVM.

Features of WebSphere Real Time for Linux

Real-time applications need consistent run time rather than absolute speed.

The main concerns when deploying real-time applications with traditional JVMs
are as follows:
v Unpredictable (potentially long) delays from Garbage Collection (GC) activity.
v Delays to method runtime as Just-In-Time (JIT) compilation and recompliation

occurs, with variability in execution time.
v Arbitrary operating system scheduling.

© Copyright IBM Corp. 2003, 2010 1

http://www.ibm.com/developerworks/java/jdk/diagnosis/

WebSphere Real Time for Linux removes these obstacles by providing:
v The Metronome Garbage Collector, an incremental, deterministic garbage

collector with very small pause times

What's new
This topic introduces anything new for IBM WebSphere Real Time for Linux
Refreshes

What's new for WebSphere Real Time for Linux V2 Refresh 3
v Java thread names are visible in the operating system when using the ps

command. For further information about using the ps command, see “Examining
process information” on page 39.

v Regular Java threads can be scheduled using the SCHED_RR scheduling policy.
For further information, see Chapter 3, “Thread scheduling and dispatching,” on
page 13.

What's new for WebSphere Real Time for Linux V2 Refresh 2
v New WebSphere Real Time distributions for AIX® on Power systems.
v Security considerations for the shared class cache.

The shared class cache is designed for ease of cache management and usability, but
the default security policy might not be appropriate.

When using the shared class cache, you must be aware of the default permissions
for new files so that you can improve security by restricting access.

File Default permissions

new shared caches read permissions for group and other

javasharedresources directory world read, write, and execute permission

You require write permission on both the cache file and the cache directory to
destroy or grow a cache.

For information about how to change the permissions on a shared cache or
directory, see “Security considerations for the shared class cache” on page 4.

What's new for WebSphere Real Time for Linux V2 Refresh 1
v There are no significant updates.

Benefits
The benefits of the real-time environment are that Java applications run with a
greater degree of predictability than with the standard JVM and provide consistent
timing behavior for your Java application. Background activities, such as
compilation and garbage collection, occur at given times and thus remove any
unexpected peaks of background activity when running your application.

You obtain these advantages by extending the JVM with the Metronome real time
garbage collection technology.

2 WebSphere Real Time V2 for Linux: User Guide

|

|
|
|

|
|
|

Considerations
You must be aware of a number of factors when using WebSphere Real Time for
Linux.
v Where possible, do not run more than one real-time JVM on the same system.

The reason is that you would then have multiple garbage collectors. Each JVM
does not know about the memory areas of the other. Therefore, neither JVM can
know what is feasible.

v When using shared class caches, the cache name must not exceed 53 characters.
v Changed thread names.

Some internal JVM thread names have changed in WebSphere Real Time for
Linux 2 SR 3. For example, the default name for a real-time thread is
RTThread-n, where n is an integer to identify the exact threat. Similarly, the
default name for a no-heap real-time thread is NHRTThread-n.

Performance considerations
WebSphere Real Time for Linux is optimized for consistently short GC pauses
rather than the highest throughput performance or smallest memory footprint.

On systems where hyperthreading is supported, you must ensure that it is not
enabled. This is to avoid adverse performance effects when using WebSphere Real
Time for Linux.

Performance on certified hardware configurations

Certified systems have sufficient clock granularity and processor speed to support
WebSphere Real Time for Linux performance goals. For example, a well written
application running on a system that is not overloaded, and with an adequate
heap size, would normally experience GC pause times of about 3 milliseconds, and
no more than 3.2 milliseconds. During GC cycles, an application with default
environment settings is not paused for more than 30% of elapsed time during any
sliding 60 millisecond window. The collective time spent in GC pauses over any 60
millisecond period should add up to about 18 milliseconds.

Reducing timing variability

The main sources of variability in a standard JVM are garbage collection pauses. In
WebSphere Real Time for Linux, the potentially long pauses from standard
Garbage Collector modes are avoided by using the Metronome Garbage Collector.
See Chapter 4, “Using the Metronome Garbage Collector,” on page 19.

Class data sharing between JVMs

Class data sharing provides a transparent method of reducing memory footprint
and improving JVM start time. To learn more on class data sharing see “Class data
sharing between JVMs” on page 4

Compressed references

From WebSphere Real Time for Linux V2 SR3, the 64-bit version uses a JVM that
supports compressed references. When using compressed references, the JVM
stores all references to objects, classes, threads, and monitors as 32-bit values.
Using compressed references improves the performance of many applications
because objects are smaller, resulting in less frequent garbage collection and

Chapter 1. Introduction 3

|

|
|
|
|

|

|
|
|
|
|

improved memory cache utilization. For further information about compressed
references, see the Memory Management section of the Diagnostics Guide.

Scheduling policies and priorities

From WebSphere Real Time for Linux V2 SR3, regular Java threads can run with
the policy SCHED_RR in addition to the default policy SCHED_OTHER. When
running with the policy SCHED_RR, threads can run with a Linux priority 1 - 10,
giving you finer control over your application. For more information about thread
scheduling and dispatching, see Chapter 3, “Thread scheduling and dispatching,”
on page 13.
Related concepts

“Launching secondary processes” on page 17
The java.lang.Runtime.exec methods in the Java virtual machine (JVM) API give
your Java application the ability to execute a command in a separate process.

Class data sharing between JVMs
Support for shared classes is the same when running with, or without, the
-Xrealtime option.

The Java Virtual Machine (JVM) allows you to share class data between JVMs by
storing it in a memory-mapped cache file on disk. Sharing reduces the overall
virtual storage consumption when more than one JVM shares a cache. Sharing also
reduces the startup time for a JVM after the cache has been created. The shared
class cache is independent of any running JVM and persists until it is destroyed.

A shared cache can contain:
v Bootstrap classes
v Application classes
v Metadata that describes the classes
v Ahead-of-time (AOT) compiled code

Security considerations for the shared class cache
The shared class cache is designed for ease of cache management and usability, but
the default security policy might not be appropriate.

When using the shared class cache, you must be aware of the default permissions
for new files so that you can improve security by restricting access.

File Default permissions

new shared caches read permissions for group and other

javasharedresources directory world read, write, and execute permission

You require write permission on both the cache file and the cache directory to
destroy or grow a cache.

Changing the file permissions on the cache file

To limit access to a shared class cache, you can use the chmod command.

Change required Command

Limit access to the user and group chmod 770 /tmp/javasharedresources

4 WebSphere Real Time V2 for Linux: User Guide

|
|

http://www.ibm.com/developerworks/java/jdk/diagnosis/

Change required Command

Limit access to the user chmod 700 /tmp/javasharedresources

Limit the user to read and write access only
for a particular cache

chmod 600 /tmp/javasharedresources/<file
for shared cache>

Limit the user and group to read and write
access only for a particular cache

chmod 660 /tmp/javasharedresources/<file
for shared cache>

Connecting to a cache that you do not have permission to
access

If you try to connect to a cache that you do not have the appropriate access
permissions for, you see an error message:
JVMSHRC226E Error opening shared class cache file
JVMSHRC220E Port layer error code = -302
JVMSHRC221E Platform error message: Permission denied
JVMJ9VM015W Initialization error for library j9shr25(11): JVMJ9VM009E J9VMDllMain failed
Could not create the Java virtual machine.

Related concepts

“Cache access” on page 161
A JVM can access a shared class cache with either read-write or read-only access.
Read-write access is the default and allows all users equal rights to update the
cache. Use the -Xshareclasses:readonly option for read-only access.
Considerations and limitations of using class data sharing
Consider these factors when deploying class data sharing in a product and using
class data sharing in a development environment.
Creating, populating, monitoring, and deleting a cache
An overview of the life-cycle of a shared class data cache including examples of
the cache management utilities.

Chapter 1. Introduction 5

6 WebSphere Real Time V2 for Linux: User Guide

Chapter 2. Installing WebSphere Real Time for Linux

Follow these steps to install the product.

Installation files
You require these installation files.
v The installation file for IBM WebSphere Real Time for Linux is called

ibm-srt-sdk-2.0-2.0-linux-i386.tgz for 32-bit Linux and ibm-srt-sdk-2.0-
2.0-linux-i386_64.tgz for 64-bit Linux.

v The IBM Eclipse Help system, Version 3.1.1. can be installed locally and the
WebSphere Real Time for Linux documentation plug-in jar file can be copied to
the plug-in directory. See http://www.alphaworks.ibm.com/tech/iehs/
download.

Hardware and software prerequisites
Use this list to check the hardware, operating system, and Java environment that is
supported for WebSphere Real Time for Linux.

Hardware

WebSphere Real Time for Linux certified hardware configurations are
multiprocessor variants of the following systems:
v IBM BladeCenter® LS20 (Types 8850-76U, 8850-55U, 7971, 7972)
v IBM eServer™ xSeries® 326m (Types 7969-65U, 7969-85U, 7984-52U, 7984-6AU)
v IBM BladeCenter LS21 (Type 7971-6AU)
v IBM BladeCenter HS21 XM Dual Quad Core (Type 7995)

In addition, WebSphere Real Time for Linux is supported on hardware that runs a
supported operating system, and that has these characteristics:
v A minimum of 512 MB of physical memory.
v AMD Opteron, Intel® Pentium® processor, or Intel EM64T running at 800 MHz

or faster.
v WebSphere Real Time for Linux for 32-bit: minimum Intel Pentium 3, AMD

Opteron, or Intel Atom Processor.
v WebSphere Real Time for Linux for 64-bit: Intel 64, AMD Opteron, or Intel Atom

Processor 230 or 330.

For systems that are not certified hardware configurations, IBM does not make any
performance statements. Performance considerations for certified hardware
configurations are detailed here: “Performance considerations” on page 3

Operating system

The operating system kernel must support a high resolution clock. This means the
kernel must be either:
v A 2.6 kernel, with the HZ value set to 1000 at kernel compile time.
v A newer 'tickless' kernel.

© Copyright IBM Corp. 2003, 2010 7

http://www.alphaworks.ibm.com/tech/iehs/download
http://www.alphaworks.ibm.com/tech/iehs/download

Supported operating systems include:
v Red Hat Enterprise Linux AS Version 4.0 Update 8
v Red Hat Enterprise Linux AS Version 5.0 Update 3
v SUSE Linux Enterprise Server Version 9 SP4
v SUSE Linux Enterprise Server Version 11
Related information

“Setting up and checking your Linux environment” on page 36
Linux operating systems undergo a large number of patches and updates.

Useful tools
You can use these tools with WebSphere Real Time for Linux. Some of these tools
are in the early stages of development and might not be fully supported.

For application development, Eclipse SDK 3.1.2 or later provides a complete
application development environment for real-time applications. This product can
be downloaded from http://www.eclipse.org/downloads/.

You can find information about the latest tools that you can use to support
WebSphere Real Time for Linux; for example: Tuning fork, eventrons, and real-time
class analysis tool (ratcat). These tools can be downloaded from
http://www.alphaworks.ibm.com/keywords/Real-time%20Java.

Unpacking the WebSphere Real Time for Linux gzipped tar file
The JVM is supplied in a gzipped file called ibm-srt-sdk-2.0-2.0-linux-i386.tgz.
It can be installed into any directory.

About this task

To unpack the Java driver, follow these instructions.

Procedure

From a shell prompt, enter:
tar xzf ibm-srt-sdk-2.0-2.0-linux-i386.tgz -C target_directory

where target_directory is your working directory. This command creates the
following directories:
ibm-srt-i386-60/

bin/
copyright
demo/
docs/
include/
jre/
lib/
license_en.html
readmeFirst.txt
sample/
src.zip

What to do next

See “Setting the path” on page 9 to set your PATH environment variable.

8 WebSphere Real Time V2 for Linux: User Guide

http://www.eclipse.org/downloads/
http://www.alphaworks.ibm.com/keywords/Real-time%20Java

Setting the path
When you have set the PATH environment variable, you can run an application or
program by typing its name at a shell prompt.

About this task

Note: If you alter the PATH environment variable as described in this section, you
override any existing Java executables in your path.

You can specify the path to a tool by typing the path before the name of the tool
each time. For example, if the SDK is installed in /opt/ibm/ibm-srt-i386-60/, you
can compile a file named myfile.java by typing the following at a shell prompt:
/opt/ibm/ibm-srt-i386-60/bin/javac myfile.java

To avoid typing the full path each time:
1. Edit the shell startup file in your home directory (usually .bashrc, depending

on your shell) and add the absolute paths to the PATH environment variable;
for example:
export PATH=/opt/ibm/ibm-srt-i386-60/bin:/opt/ibm/ibm-srt-i386-60/jre/bin:$PATH

2. Log on again or run the updated shell script to activate the new PATH setting.
3. Compile the file with the javac tool. For example, to compile the file myfile.java,

at a shell prompt, enter:
javac -Xgcpolicy:metronome myfile.java

The PATH environment variable enables Linux to find executable files, such as
javac, java, and the javadoc tool, from any current directory. To display the
current value of your path, type the following at a command prompt:

echo $PATH

What to do next

See “Setting the classpath” to determine whether you need to set your
CLASSPATH environment variable.

Setting the classpath
The CLASSPATH environment variable tells the SDK tools, such as java, javac,
and javadoc tool, where to find the Java class libraries.

About this task

Set the CLASSPATH environment variable explicitly only if one of the following
applies:
v You require a different library or class file, such as one that you develop, and it

is not in the current directory.
v You change the location of the bin and lib directories and they no longer have

the same parent directory.
v You plan to develop or run applications using different runtime environments

on the same system.

To display the current value of your CLASSPATH, enter the following at a shell
prompt:

echo $CLASSPATH

Chapter 2. Installing WebSphere Real Time for Linux 9

If you develop and run applications that use different runtime environments,
including other versions that you have installed separately, you must set
CLASSPATH and PATH explicitly for each application. If you run multiple
applications simultaneously and use different runtime environments, each
application must run in its own shell.

If you run only one version of Java at a time, you can use a shell script to switch
between the different runtime environments.

What to do next

See “Testing your installation” to verify that your installation has been successful.

Testing your installation
Use the -version option to check if your installation is successful.

About this task

The Java installation consists of a real-time JVM.

Procedure

Test your installation by following these steps:
1. To see version information for the real-time JVM, type the following command

at a shell prompt:
java -Xgcpolicy:metronome -version

This command returns the following messages if it is successful:
java version "1.6.0"
Java(TM) SE Runtime Environment (build pxi3260srtsr3-20100301_01(SR3))
IBM J9 VM (build 2.5, JRE 1.6.0 IBM J9 real-time 2.5 Linux x86-32 jvmxi32srt60sr3-20100227_54567 (JIT enabled, AOT enabled)
J9VM - 20100227_054567
JIT - r10_20100225_14943
GC - 20100226_AA)
JCL - 20100222_01

Note: The version information is correct but the dates might be later than the
ones in this example. The format of the date string is: yyyymmdd followed
possibly by additional information specific to the component.

Viewing the online help
In the docs directory, the documentation is provided for use in the Eclipse Help
System as com.ibm.softrt.doc.jar and com.ibm.softrt.doc.zip. The information
is also provided as an Adobe® PDF file called softrt_jre.pdf.

About this task
v com.ibm.softrt.doc.jar can be copied directly into the plug-ins directory of

your Eclipse Help System V3.1.1 or the plug-in directory of Eclipse SDK V3.1.2
or later.

v com.ibm.softrt.doc.zip can be unpacked into the plug-in directory of your
Eclipse Help System if the version is earlier than V3.1.1.

v softrt_jre.pdf is for use with Adobe Acrobat.

10 WebSphere Real Time V2 for Linux: User Guide

|
|
|
|
|
|
|

To use the information center on your personal computer, you install the Eclipse
Help System.

Note: The information center is also provided as a PDF, but the information has
not been fully optimized for this format.

Procedure
1. Install the Eclipse Help System.

a. Download the latest version of the Eclipse Help System version from
http://www.alphaworks.ibm.com/tech/iehs/download.

b. Select the .zip, .tar, or .tgz file that is appropriate for your operating system.
c. Create a new directory where you plan to install the Eclipse Help System.

This directory is referred to as <INSTALL_DIR> in the rest of this document.
d. Unpack the file into, for example, /opt/<INSTALL_DIR> or C:\<INSTALL_DIR>

directory depending on your operating system. The unpacking creates a
directory called /opt/<INSTALL_DIR>/ibm_help on Linux or
C:\<INSTALL_DIR>\IBM_Help_301_Win\ibm_help on Windows®.

2. Add the WebSphere Real Time for Linux Information Center to your Eclipse
Help System.
v For Eclipse versions earlier than V3.1.1. Extract the files from

com.ibm.softrt.doc.zip into the /opt/<INSTALL_DIR>/ibm_help/eclipse/
plugins directory on Linux or C:\<INSTALL_DIR>\IBM_Help_301_Win\
ibm_help\eclipse\plugins on Windows.

v For Eclipse V3.1.1 or later. Copy com.ibm.softrt.doc.jar to the plug-in
directory in the help system. For example, this directory is
/opt/<INSTALL_DIR>/ibm_help/eclipse/plugins directory on Linux or
C:\<INSTALL_DIR>\IBM_Help_301_Win\ibm_help\eclipse\plugins on
Windows.

3. Start the Eclipse Help System by changing directory to /opt/<INSTALL_DIR>/
ibm_help and entering help_start.

4. You can use the Eclipse Help System in these ways:
v Using the search function. The first time you search, the search pauses while

indexing takes place.
v Filtering your searches. You can "Set Scope" so that it searches only the

WebSphere Real Time for Linux Information Center. Follow the prompts.
v Printing. From the navigation tree, click the icon that appears when you

hover over a topic in the navigation tree. Use the pop-up menu to select that
topic or all of the subtopics associated with that topic. Click your preference
and a new window opens for you to confirm that you want to print that
part. Submit the job to your local printer in the typical way.

v Installing on a Local Area Network. See the release notes that come with the
Eclipse Help System for more information.

v Using a CD. See the release notes that come with the Eclipse Help System for
more information.

5. Close the Eclipse Help System. When you have finished with the help system,
enter help_end. Otherwise, the next time you try to start the system, you will
not be able to start it because of a running process.

Chapter 2. Installing WebSphere Real Time for Linux 11

http://www.alphaworks.ibm.com/tech/iehs/download

12 WebSphere Real Time V2 for Linux: User Guide

Chapter 3. Thread scheduling and dispatching

The Linux operating system supports various scheduling policies. The default
universal time sharing scheduling policy is SCHED_OTHER, which is used by
most threads. SCHED_RR and SCHED_FIFO can be used by threads in real-time
applications. Only SCHED_OTHER and SCHED_RR are used by WebSphere Real
Time for Linux.

The kernel decides which is the next runnable thread to be run by the CPU. The
kernel maintains a list of runnable threads. It looks for the thread with the highest
priority and selects that thread as the next thread to be run.

Thread priorities and policies can be listed using the following command:
ps -emo pid,ppid,policy,tid,comm,rtprio,cputime

where policy:
v TS is SCHED_OTHER
v RR is SCHED_RR
v FF is SCHED_FIFO
v - has no policy reported

The output looks like this example:
PID PPID POL TID COMMAND RTPRIO TIME

31531 30800 - - java - 00:00:13
- - RR 31531 - 6 00:00:00
- - RR 31532 - 6 00:00:13
- - RR 31533 - 6 00:00:00
- - RR 31538 - 6 00:00:00
- - RR 31539 - 6 00:00:00
- - RR 31540 - 6 00:00:00
- - RR 31541 - 6 00:00:00
- - RR 31542 - 6 00:00:00
- - RR 31543 - 6 00:00:00
- - RR 31544 - 6 00:00:00
- - RR 31545 - 6 00:00:00
- - RR 31546 - 6 00:00:00

This output shows the Java process, and numerous threads with policy SCHED_RR
and priority 6.

SCHED_OTHER
The default universal time-sharing scheduler policy that is used by most
threads. These threads must be assigned with a priority of zero.

SCHED_OTHER uses time slicing, which means that each thread runs for a
limited time period, after which the next thread is allowed to run.

SCHED_FIFO
Can be used only with priorities greater than zero. This usage means that
when a SCHED_FIFO process becomes available it preempts any normal
SCHED_OTHER thread.

If a SCHED_FIFO process that has a higher priority becomes available, it
preempts an existing SCHED_FIFO process if that process has a lower
priority. This thread is then kept at the top of the queue for its priority.

© Copyright IBM Corp. 2003, 2010 13

|

|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|

There is no time slicing.

Note: SCHED_FIFO is not used by WebSphere Real Time for Linux.

SCHED_RR
Is an enhancement of SCHED_FIFO. The difference is that each thread is
allowed to run only for a limited time period. If the thread exceeds that
time, it is returned to the list for its priority. SCHED_RR can be used by
WebSphere Real Time for Linux V2 SR3 and later.

For details on these Linux scheduling policies, see the man page for
sched_setscheduler. To query the current scheduling policy, use
sched_getscheduler, or the ps command shown in the example.

For more information about processes, see “Examining process information” on
page 39.
Related concepts

“Launching secondary processes” on page 17
The java.lang.Runtime.exec methods in the Java virtual machine (JVM) API give
your Java application the ability to execute a command in a separate process.

Regular Java thread priorities and policies

Regular Java threads, that is, threads allocated as java.lang.Thread objects, use the
default scheduling policy of SCHED_OTHER. From WebSphere Real Time for
Linux V2 SR3, you can run regular Java threads with the SCHED_RR scheduling
policy.

By default, Java threads are run using the default SCHED_OTHER policy. This
policy maps Java threads to the operating system priority 0.

Using the SCHED_RR policy gives you finer control over your application, which
can improve the real-time performance of Java threads. The JVM detects the
priority and policy of the main thread when Java is started with the SCHED_RR
policy. The JVM alters the priority and policy mappings accordingly. All Java
threads are run at the same operating system priority as the main thread. Although
SCHED_RR can be assigned priorities 1 - 99, the usable SCHED_RR priorities for
WebSphere Real Time for Linux V2 are priorities 1 - 10. If the priority is set higher
than 10, the priority of the main thread is lowered to 10 and the mapping applied
based on the value of 10.

One way to alter the real-time scheduling property of a process on the command
line is to use the command chrt. In the following example, the priority of the main
Java thread is set to use the SCHED_RR scheduling policy, with an operating
system priority of 6.
chrt -r 6 java

You might need to configure your system to allow priorities to be changed. See
“Configuring the system to allow priority changes” on page 15 for more
information.

Table 3. Java and operating system priorities

Java priority
Java priority value for
thread Operating system priority

1 MIN_PRIORITY 6

14 WebSphere Real Time V2 for Linux: User Guide

|

|

|
|
|
|
|

|
|
|

|
|

|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

||

|
|
||

|||

Table 3. Java and operating system priorities (continued)

Java priority
Java priority value for
thread Operating system priority

2 6

3 6

4 6

5 NORM_PRIORITY (default) 6

6 6

7 6

8 6

9 6

10 MAX_PRIORITY 6

All threads associated with the main Java thread are run at the same operating
system priority.

If you run the command chrt -r 11 java, the result is the same as running chrt
-r 10 java. This is because you cannot apply a priority above 10 to the priority
mapping used by JVM threads, although the thread that launches the JVM and
waits for JVM termination remains at priority 11.

The JVM produces an error message if you attempt to use the command chrt -f 6
java, because SCHED_FIFO is not supported on WebSphere Real Time for
Linux V2.

For more information about the chrt command, see http://
publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/
realtime/liaairtchrt.htm.

Configuring the system to allow priority changes

By default, non-root users on Linux cannot raise the priority of a thread or process.
You can change the system configuration to allow priority changes using the
pam_limits module of the Pluggable Authentication Modules (PAM) for Linux.

If you cannot change the priority of a thread or process using the chrt utility, you
typically see the following message:
sched_setscheduler: Operation not permitted

On recent Linux kernels, you can change the configuration of the system to allow
priority changes using the pam_limits module. This module allows you to
configure the limits on system resources, which are taken from the limits
configuration file. The default file is /etc/security/limits.conf.

An entry in the /etc/security/limits.conf file has the following form:
<domain> <type> <item> <value>

where:

<domain> is either:
- a user name on the system that can alter limits on a resource.

Chapter 3. Thread scheduling and dispatching 15

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|

|
|

|

|
|
|
|

|

|

|

|
|

http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm

- a group name, with the syntax @group, whose members can alter limits
on a resource.

- a wildcard "*", which indicates that any user or group can alter limits on
a resource.

<type> is either:
- hard, where hard limits are enforced by the kernel.

- soft, where soft limits apply, which can be moved within the range
provided by the hard limits.

- a dash "-", which indicates hard and soft limits.

<item> is:
- a resource. Use rtprio for real-time priorities.

<value> is:
- a limit. Use a value in the range 1 - 100 to indicate the maximum limit
for real-time priority setting.

For example,
* - rtprio 100

allows all users to change the priority of real-time processes, using chrt or other
mechanisms.

By default, the root user can increase real-time priorities without limits. To apply a
limit to root, the root user must be explicitly specified. Group and wildcard limits
in the configuration file do not apply to the root user.

If you specify individual user limits in the file, these limits have priority over
group limits.

Changes to limits.conf do not take effect immediately. You must restart the
affected services or reboot the system for a configuration change to take effect.

The ability to increase the real-time priority of a Java Virtual Machine (JVM) is not
available on Linux kernels 2.6.12 and earlier. The table indicates whether support is
available for this feature in some common Linux distributions.

Table 4.

Linux distribution Linux kernel version
Support for real-time
priority changes (yes/no)

Red Hat Enterprise Linux
(RHEL) 4

2.6.9 no

RHEL 5 and later 2.6.18 and later yes

SUSE Linux Enterprise
Server (SLES) 9

2.6.5-7 no

SLES 10 and later 2.6.16 and later yes

Red Hat Enterprise MRG -
all versions

2.6.24 and later yes

SUSE Linux Enterprise Real
Time (SLERT) - all versions

2.6.16 and later yes

Ubuntu 5.10 2.6.12 no

Ubuntu 6.06 and later 2.6.15 and later yes

16 WebSphere Real Time V2 for Linux: User Guide

|
|

|
|

|
|

|
|

|

|
|

|
|
|

|

|

|
|

|
|
|

|
|

|
|

|
|
|

||

||
|
|

|
|
||

|||

|
|
||

|||

|
|
||

|
|
||

|||

|||
|

For some examples of using chrt on a real-time Linux system, see
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/
realtime/liaairtchrt.htm . To enable priority changes on a real-time Linux system
you can add a user to the realtime group, which has an entry in the limits.conf
file.
Related concepts

“Launching secondary processes”
The java.lang.Runtime.exec methods in the Java virtual machine (JVM) API give
your Java application the ability to execute a command in a separate process.

Launching secondary processes
The java.lang.Runtime.exec methods in the Java virtual machine (JVM) API give
your Java application the ability to execute a command in a separate process.

From that method call, a new java.lang.Process object is created. The object can be
used to control the new process, or to obtain information about it.

Several threads are created by the exec methods for this purpose. In IBM
WebSphere Real Time for Linux, modifications of the procedure enable more
deterministic behavior in a real-time environment.

The Runtime.exec call creates a “reaper” thread for each forked subprocess. The
reaper thread is the only thread that waits for the subprocess to terminate. When
the subprocess terminates, the reaper thread records the subprocess exit status. The
reaper thread spawns the new process, and gives it the same priority as the thread
that originally called Runtime.exec.

If the spawned process is another WebSphere Real Time for Linux JVM, and the
Runtime.exec method was called by another method running with a Linux
real-time policy and priority, then the main thread of the new virtual machine
maps its policy and priority to the same Linux real-time policy and priority. The
priority mapping is constrained by an upper bound of 10.

The reaper thread also creates two new threads that listen to the stdout and
stderr streams of the new process. The stdout and stderr data is saved into
buffers used by these threads. The buffers persist beyond the lifetime of the
spawned process. This persistence allows the resources held by the spawned
process to be cleared immediately when the process terminates.

Chapter 3. Thread scheduling and dispatching 17

|
|
|
|
|

|

|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

 http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm
 http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm

18 WebSphere Real Time V2 for Linux: User Guide

Chapter 4. Using the Metronome Garbage Collector

Metronome Garbage Collector replaces the standard Garbage Collector in
WebSphere Real Time for Linux.
Related reference

“Metronome Garbage Collector options” on page 237
The definitions of the Metronome Garbage Collector options.

Introduction to the Metronome Garbage Collector
The benefit of the Metronome Garbage Collector is that the time it takes is more
predictable and garbage collection can take place at set intervals over a period of
time.

The key difference between Metronome garbage collection and standard garbage
collection is that Metronome garbage collection occurs in small interruptible steps
but standard garbage collection stops the application while it marks and collects
garbage.

You can control garbage collection with the Metronome Garbage Collector using
the -Xgc:targetUtilization=N option to limit the amount of CPU used by the
Garbage Collector.

For example:
java -Xgcpolicy:metronome -Xgc:targetUtilization=80 yourApplication

The example specifies that your application runs for 80% in every 60ms. The
remaining 20% of the time is used for garbage collection. The Metronome Garbage
Collector guarantees utilization levels provided that it has been given sufficient
resources. Garbage collection begins when the amount of free space in the heap
falls below a dynamically determined threshold.

Metronome garbage collection and class unloading

Metronome supports class unloading in the same way as a standard Java
developer kit. However, because of the work involved, while unloading classes
there might be pause time outliers during garbage collection activities.

Metronome Garbage Collector threads

The Metronome Garbage Collector consists of two types of threads: a single alarm
thread, and a number of collection (GC) threads. By default, GC uses one thread
for each logical active processor available to the operating system. This enables the
most efficient parallel processing during GC cycles. A GC cycle means the time
between GC being triggered and the completion of freeing garbage. Depending on
the Java heap size, the elapsed time for a complete GC cycle could be several
seconds. A GC cycle usually contains hundreds of GC quanta. These quanta are the
very short pauses to application code, typically lasting 3 milliseconds. Use
-verbose:gc to get summary reports of cycles and quanta. For more information,
see: “Using verbose:gc information” on page 20. You can set the number of GC
threads for the JVM using the -Xgcthreads option.

© Copyright IBM Corp. 2003, 2010 19

There is no benefit from increasing -Xgcthreads above the default. Reducing
-Xgcthreads can reduce overall CPU load during GC cycles, though GC cycles will
be lengthened.

Note: GC quanta duration targets remain constant at 3 milliseconds.

You cannot change the number of alarm threads for the JVM.

The Metronome Garbage Collector periodically checks the JVM to see if the heap
memory has sufficient free space. When the amount of free space falls below the
limit, the Metronome Garbage Collector triggers the JVM to start garbage
collection.
Alarm thread

The single alarm thread guarantees to use minimal resources. It “wakes” at
regular intervals and makes these checks:
v The amount of free space in the heap memory
v Whether garbage collection is currently taking place

If insufficient free space is available and no garbage collection is taking
place, the alarm thread triggers the collection threads to start garbage
collection. The alarm thread does nothing until the next scheduled time for
it to check the JVM.

Collection threads
The collection threads perform the garbage collection.

After the garbage collection cycle has completed, the Metronome Garbage Collector
checks the amount of free heap space. If there is still insufficient free heap space,
another garbage collection cycle is started using the same trigger id. If there is
sufficient free heap space, the trigger ends and the garbage collection threads are
stopped. The alarm thread continues to monitor the free heap space and will
trigger another garbage collection cycle when it is required.
Related reference

“Metronome Garbage Collector options” on page 237
The definitions of the Metronome Garbage Collector options.

Troubleshooting the Metronome Garbage Collector
Using the command-line options, you can control the frequency of Metronome
garbage collection, out of memory exceptions, and the Metronome behavior on
explicit system calls.
Related concepts

Chapter 6, “Troubleshooting OutOfMemory Errors,” on page 29
Dealing with OutOfMemoryError exceptions
Related information

“Tracing Java applications and the JVM” on page 118
JVM trace is a trace facility that is provided in all IBM-supplied JVMs with
minimal affect on performance. In most cases, the trace data is kept in a compact
binary format, that can be formatted with the Java formatter that is supplied.

Using verbose:gc information
You can use the -verbose:gc option with the -Xgc:verboseGCCycleTime=N option
to write information to the console about Metronome Garbage Collector activity.
Not all XML properties in the -verbose:gc output from the standard JVM are
created or apply to the output of Metronome Garbage Collector.

20 WebSphere Real Time V2 for Linux: User Guide

Use the -verbose:gc option to view the minimum, maximum, and mean free space
in the heap. In this way, you can check the level of activity and use of the heap
and subsequently adjust the values if necessary. The -verbose:gc option writes
Metronome statistics to the console.

The -Xgc:verboseGCCycleTime=N option controls the frequency of retrieval of the
information. It determines the time in milliseconds that the summaries are
dumped. The default value for N is 1000 milliseconds. The cycle time does not
mean the summary is dumped precisely at that time, but when the last garbage
collection event that meets this time criterion passes. The collection and display of
these statistics can distort Metronome Garbage Collector pause time targets and, as
N gets smaller, the distortion can become quite large.

A quantum is a single period of Metronome Garbage Collector activity, causing an
interruption or pause time for an application.

Example of verbose:gc output

Enter:
java -Xgcpolicy:metronome -verbose:gc -Xgc:verboseGCCycleTime=N myApplication

When garbage collection is triggered, a trigger start event occurs, followed by any
number of heartbeat events, then a trigger end event when the trigger is satisfied.
This example shows a triggered garbage collection cycle as verbose:gc output:
<gc type="trigger start" id="7" timestamp="Oct 20 20:42:49 2008" intervalms="317.456" />

<gc type="heartbeat" id="17" timestamp="Oct 20 20:42:50 2008" intervalms="1008.280">
<summary quantumcount="51">

<quantum minms="0.362" meanms="3.015" maxms="3.096" />
<exclusiveaccess minms="0.003" meanms="0.014" maxms="0.044" />
<heap minfree="532568668" meanfree="855123353" maxfree="1152691352" />

</summary>
</gc>

<gc type="heartbeat" id="18" timestamp="Oct 20 20:42:51 2008" intervalms="1011.684">
<summary quantumcount="54">

<quantum minms="0.106" meanms="2.829" maxms="3.113" />
<exclusiveaccess minms="0.003" meanms="0.018" maxms="0.055" />
<heap minfree="410376144" meanfree="623433365" maxfree="818067840" />

</summary>
</gc>

<gc type="heartbeat" id="19" timestamp="Oct 20 20:42:51 2008" intervalms="432.527">
<summary quantumcount="21">

<quantum minms="3.017" meanms="3.069" maxms="3.105" />
<exclusiveaccess minms="0.004" meanms="0.025" maxms="0.053" />
<classunloading classloaders="2" classes="1" />
<refs_cleared soft="14" threshold="20" maxThreshold="32" weak="0" phantom="0" />
<heap minfree="301004952" meanfree="420760698" maxfree="538701108" />

</summary>
</gc>

<gc type="synchgc" id="6" timestamp="Oct 20 20:42:51 2008" intervalms="14.628">
<details reason="out of memory" />
<duration timems="185.741" />
<heap freebytesbefore="290197120" />
<heap freebytesafter="1462221448" />

</gc>

<gc type="trigger end" id="7" timestamp="Oct 20 20:42:51 2008" intervalms="2653.000" />

Chapter 4. Using the Metronome Garbage Collector 21

The following event types can occur:

<gc type="trigger start" ...>
The start of a garbage collection cycle. The used memory became higher
than the trigger threshold. The default threshold is 50% of heap. You can
change the threshold by using the -XXgc:trigger=NN, where NN is an
absolute amount of memory. The intervalms attribute is the interval
between the previous trigger end event (with id-1) and this trigger start
event.

<gc type="trigger end" ...>
A garbage collection cycle successfully lowered the amount of used
memory to below the trigger threshold. If a garbage collection cycle ended,
but used memory did not drop below the trigger threshold, a new garbage
collection cycle is started as part of the same trigger ID. For each trigger
start event, there is a matching trigger end event with same ID. The
intervalms attribute is the interval between the previous trigger start event
(with the same id) and the current trigger end event. During this period of
time, one or more garbage collection cycles will have completed until used
memory has dropped below the trigger threshold.

<gc type="heartbeat" ...>
A periodic event that gathers information (on memory and time) about all
garbage collection quanta for the period of time it covers. A heartbeat
event can occur only between a matching pair of triggerstart and
triggerend events; that is, while an active garbage collection cycle is in
process. The intervalms attribute is the interval between the previous
heartbeat event (with id -1) and this heartbeat event.

<gc type="syncgc" ...>
A synchronous (nondeterministic) garbage collection event. See
“Synchronous garbage collections” on page 23

The XML tags in this example have the following meanings:

<summary ...>
A summary of the garbage collection activity during the heartbeat interval.
The quantumcount attribute is the number of garbage collection quanta
run in the summary period.

<quantum ...>
A summary of the length of quantum pause times during the heartbeat
interval in milliseconds.

<heap ...>
A summary of the amount of free heap space during the heartbeat interval,
sampled at the end of each garbage collection quantum.

<classunloading ...>
The number of classloaders and classes unloaded during the heartbeat
interval.

<refs_cleared ...>
Is the number of Java reference objects that were cleared during the
heartbeat interval.

Note:

22 WebSphere Real Time V2 for Linux: User Guide

v If only one garbage collection quantum occurred in the interval between two
heartbeats, the free memory is sampled only at the end of this one quantum,
and therefore the minimum, maximum, and mean amounts given in the
heartbeat summary are all equal.

v It is possible that the interval might be significantly larger than the cycle time
specified because the garbage collection has no work on a heap that is not full
enough to warrant garbage collection activity. For example, if your program
requires garbage collection activity only once every few seconds, you are likely
to see a heartbeat only once every few seconds.
If an event such as a synchronous garbage collection or a priority change occurs,
the details of the event and any pending events, such as heartbeats, will be
immediately produced as output.

v If the maximum garbage collection quantum for a given period is too large, you
might want to reduce the target utilization using the -Xgc:targetUtilization
option to give the Garbage Collector more time to work, or you might want to
increase the heap size using the -Xmx option. Similarly, if your application can
tolerate longer delays than are currently being reported, you can increase the
target utilization or decrease the heap size.

v The output can be redirected to a log file instead of the console using the
-Xverbosegclog:<file> option; for example, -Xverbosegclog:out writes the
-verbose:gc output to the file out.

v The priority listed in gcthreadpriority is the underlying OS thread priority, not a
Java thread priority.

Synchronous garbage collections

An entry is also written to the -verbose:gc log when a synchronous
(nondeterministic) garbage collection occurs. This event has three possible causes:
v An explicit System.gc() call in the code.
v The JVM running out of memory and performing a synchronous garbage

collection to avoid an OutOfMemoryErrorcondition.
v The JVM shutting down, while there is a continuous garbage collection. The

JVM cannot just cancel that collection, but finishes it synchronously and only
then exits.

An example of a System.gc() entry is:
<gc type="synchgc" id="1" timestamp="Oct 20 20:42:27 2008" intervalms="0.055">

<details reason="system garbage collect" />
<duration timems="3.395" />
<refs_cleared soft="0" threshold="31" maxThreshold="32" weak="2" phantom="0" />
<finalization objectsqueued="2" />
<heap freebytesbefore="2303633908" />
<heap freebytesafter="2304483260" />

</gc>

An example of a synchronous garbage collection entry as a result of JVM shutting
down is:
<gc type="synchgc" id="1" timestamp="Oct 20 20:48:35 2008" intervalms="3.513">

<details reason="vm shutdown" />
<duration timems="3.295" />
<refs_cleared soft="0" threshold="29" maxThreshold="32" weak="2" phantom="0" />
<heap freebytesbefore="32765764" />
<heap freebytesafter="62231696" />

</gc>

The XML tags and attributes in this example have the following meanings:

Chapter 4. Using the Metronome Garbage Collector 23

<gc type="syncgc" ...>
Is the event specifying that this is a synchronous garbage collection. The
intervalms attribute is the interval between previous event (heartbeat,
trigger start, trigger end, or another synchgc) and the beginning of this
synchronous garbage collection.

<details ...>
Is the cause of the synchronous garbage collection.

<duration ...>
Is the time it took to complete this garbage collection cycle synchronously
in milliseconds.

<heap ...>
Is the free Java heap memory before and after the synchronous garbage
collection in bytes.

<finalization ...>
Is the number of objects awaiting finalization.

<classunloading ...>
The number of classloaders and classes unloaded during the heartbeat
interval.

<refs_cleared ...>
Is the number of Java reference objects that were cleared during the
heartbeat interval.

Synchronous garbage collection due to out-of-memory conditions or VM shut
down can happen only when the Garbage Collector is active. It has to be preceded
by a trigger start event, although not necessarily immediately. Some heartbeat
events probably occur between a trigger start event and the synchgc event.
Synchronous garbage collection caused by System.gc() can happen at any time.

Tracking all GC quanta

Individual GC quanta can be tracked by enabling the Global GC Start and Global
GC End tracepoints. These tracepoints are produced at the beginning and end of
all Metronome Garbage Collector activity including synchronous garbage
collections. The output for these tracepoints will look similar to:
03:44:35.281 0x833cd00 j9mm.52 - GlobalGC start: weakrefs=7 soft=11 phantom=0 finalizers=75 globalcount=3 scavengecount=0

03:44:35.284 0x833cd00 j9mm.91 - GlobalGC end: workstackoverflow=0 overflowcount=0 weakrefs=7 soft=11 threshold=31 phantom=0 finalizers=75 newspace=0/0

Out-of-memory entries

When the heap runs out of free space, an entry is written to the -verbose:gc log
before the OutOfMemoryError exception is thrown. An example of this output is:

<event details="out of memory" timestamp="Oct 20 21:03:19 2008" memoryspace="Metronome" J9MemorySpace="0x080B85B4" />

By default a Javadump is produced as a result of an OutOfMemoryError exception.
This dump contains information about the memory used by your program.
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STMEMTYPE Object Memory
NULL region start end size name
1STHEAP 0x080B85B4 0xF4F20000 0xF6F10000 0x01FF0000 Default
NULL

24 WebSphere Real Time V2 for Linux: User Guide

1STMEMUSAGE Total memory available: 33554432 (0x02000000)
1STMEMUSAGE Total memory in use: 29396464 (0x01C08DF0)
1STMEMUSAGE Total memory free: 04157968 (0x003F7210)

Related reference

“Metronome Garbage Collector options” on page 237
The definitions of the Metronome Garbage Collector options.

Metronome Garbage Collector behavior in out-of-memory
conditions

By default, the Metronome Garbage Collector triggers an unlimited,
nondeterministic garbage collection when the JVM runs out of memory. To prevent
nondeterministic behavior, use the -Xgc:noSynchronousGCOnOOM option to
throw an OutOfMemoryError when the JVM runs out of memory.

The default unlimited collection runs until all possible garbage is collected in a
single operation. The pause time required is usually many milliseconds greater
than a normal metronome incremental quantum.
Related information

Using -Xverbose:gc to analyze synchronous garbage collections

Metronome Garbage Collector behavior on explicit
System.gc() calls

If a garbage collection cycle is in progress, the Metronome Garbage Collector
completes the cycle in a synchronous way when System.gc() is called. If no
garbage collection cycle is in progress, a full synchronous cycle is performed when
System.gc() is called. Use System.gc() to clean up the heap in a controlled
manner. It is a nondeterministic operation because it performs a complete garbage
collection before returning.

Some applications call vendor software that has System.gc() calls where it is not
acceptable to create these nondeterministic delays. To disable all System.gc() calls
use the -Xdisableexplicitgc option.

The verbose garbage collection output for a System.gc() call has a reason of
“system garbage collect” and is likely to have a long duration:
<gc type="synchgc" id="1" timestamp="Oct 20 20:42:27 2008" intervalms="0.055">
<details reason="system garbage collect" />
<duration timems="3.395" />
<refs_cleared soft="0" threshold="31" maxThreshold="32" weak="2" phantom="0" />
<finalization objectsqueued="2" />
<heap freebytesbefore="2303633908" />
<heap freebytesafter="2304483260" />

</gc>

Metronome Garbage Collector limitation
When using the Metronome Garbage Collector, you might experience longer than
expected pauses during garbage collection.

During garbage collection, a root scanning process is used. The garbage collector
walks the heap, starting at known live references. These references include:
v Live reference variables in the active thread call stacks.
v Static references.

Chapter 4. Using the Metronome Garbage Collector 25

To find all the live object references on an application thread's stack, the garbage
collector scans all the stack frames in that thread's call stack. Each active thread
stack is scanned in an uninterruptible step. This means the scan must take place
within a single GC quantum.

The effect is that the system performance might be worse than expected if you
have some threads with very deep stacks, because of extended garbage collection
pauses at the beginning of a collection cycle.

26 WebSphere Real Time V2 for Linux: User Guide

Chapter 5. The sample real-time hash map

The sample application uses a series of examples to demonstrate the features of
WebSphere Real Time for Linux that can be used to improve the real-time
characteristics of Java programs.

The standard java.util.HashMap that IBM provides works well for high throughput
applications. It also helps with applications that know the maximum size their
hash map needs to grow to. For applications that need a hash map that could
grow to variable sizes, depending on usage, there is a potential performance
problem with the standard hash map. The standard hash map provides good
response times for adding new entries into the hash map using the put method.
However, when the hash map fills up, a larger backing store must be allocated.
This means that the entries in the current backing store must be migrated. If the
hash map is large, the time to perform a put could also be large. For example, the
operation could take several milliseconds.

WebSphere Real Time for Linux includes a sample real-time hash map. It provides
the same functional interface as the standard java.util.HashMap, but enables much
more consistent performance for the put method. Instead of creating a backing
store and migrating all the entries when the hash map fills up, the sample hash
map creates an additional backing store. The new backing store is chained to the
other backing stores in the hash map. The chaining initially causes a slight
performance reduction while the empty backing store is allocated and chained to
the other backing stores. Once the backing hash map is updated, it is faster than
having to migrate all the entries. A disadvantage of the real-time hash map is that
the get, put and remove operations are slightly slower. The operations are slower
because each look-up must to proceed through a set of backing hash maps instead
of just one.

To try out the real-time hash map, add the RTHashMap.jar file to the start of your
boot class path. If you installed WebSphere Real Time for Linux into the directory
$WRT_ROOT, then add the following option to use the real-time hash map with your
application, instead of the standard hash map:
-Xbootclasspath/p:$WRT_ROOT/demo/realtime/RTHashMap.jar

The source and class files for the real-time hash map implementation are included
in the demo/realtime/RTHashMap.jar file. In addition, a real time
java.util.LinkedHashMap and java.util.HashSet implementation are also provided.

© Copyright IBM Corp. 2003, 2010 27

28 WebSphere Real Time V2 for Linux: User Guide

Chapter 6. Troubleshooting OutOfMemory Errors

Dealing with OutOfMemoryError exceptions
Related concepts

“Troubleshooting the Metronome Garbage Collector” on page 20
Using the command-line options, you can control the frequency of Metronome
garbage collection, out of memory exceptions, and the Metronome behavior on
explicit system calls.

Diagnosing OutOfMemoryErrors
Diagnosing OutOfMemoryError exceptions in Metronome Garbage Collector can be
more complex than in a standard JVM because of the periodic nature of the
garbage collector.

In general, a realtime application requires approximately 20% more heap space
than a standard Java application.

By default, the JVM produces the following diagnostic output when an uncaught
OutOfMemoryError occurs:
v A snap dump; see “Snap traces” on page 76.
v A Heapdump; see “Using Heapdump” on page 98.
v A Javadump; see “Using Javadump” on page 85

The dump file names are given in the console output:

The Java backtrace shown on the console output, and also available in the
Javadump, indicates where in the Java application the OutOfMemoryError
occurred. The JVM memory management component issues a tracepoint that gives
the size, class block address, and memory space name of the failing allocation. This
tracepoint can be found in the snap dump:

The tracepoint ID and data fields might vary from that shown, depending on the
type of object being allocated. In this example, the tracepoint shows that the
allocation failure occurred when the application attempted to allocate a 33.6 MB
object of type class 0x81312d8 in the Metronome heap, memory segment
id=0x809c5f0.

You can determine which memory area is affected by looking at the memory
management information in the Javadump:
NULL --
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STMEMTYPE Object Memory
NULL region start end size name
1STHEAP 0xF288B584 0xF2A1C000 0xF6A1C000 0x04000000 Default

<< lines omitted... >>
09:42:17.563258000 *0xf2888e00 j9mm.101 Event J9AllocateIndexableObject() returning NULL! 80 bytes requested for
object of class 0xf1632d80 from memory space 'Metronome' id=0xf288b584

© Copyright IBM Corp. 2003, 2010 29

NULL
1STMEMUSAGE Total memory available: 67108864 (0x04000000)
1STMEMUSAGE Total memory in use: 66676824 (0x03F96858)
1STMEMUSAGE Total memory free: 00432040 (0x000697A8)

<< lines removed for clarity >>

You can determine the type of object being allocated by looking at the classes
section of the Javadump:
NULL --
0SECTION CLASSES subcomponent dump routine
NULL =================================
<< lines omitted... >>
1CLTEXTCLLOD ClassLoader loaded classes
2CLTEXTCLLOAD Loader *System*(0xF182BB80)
<< lines omitted... >>
3CLTEXTCLASS [C(0xF1632D80)

Information in the Javadump confirms that the attempted allocation was for a
character array, in the normal heap (ID=0xF288B584) and that the total allocated
size of the heap, indicated by the appropriate 1STHEAP line, is 67108864 decimal
bytes or 0x04000000 hex bytes, or 64 MB.

In this example, the failing allocation is large in relation to the total heap size. If
your application is expected to create 33 MB objects, the next step is to increase the
size of the heap, using the -Xmx option.

It is more common for the failing allocation to be small in relation to total heap
size. This is because of previous allocations filling up the heap. In these cases, the
next step is to use the Heapdump to investigate the amount of memory allocated
to existing objects.

The Heapdump is a compressed binary file containing a list of all objects with their
object class, size, and references. Analyze the Heapdump using the Memory Dump
Diagnostics for Java tool (MDD4J), which is available for download from the IBM
Support Assistant (ISA).

Using MDD4J, you can load a Heapdump and locate tree structures of objects that
are suspected of consuming large amounts of heap space. The tool provides
various views for objects on the heap, Figure 1 on page 31 shows a view created by
MDD4J detailing likely leak suspects, and giving the top five objects and packages
contributing to the heap size.

30 WebSphere Real Time V2 for Linux: User Guide

http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/

Selecting the tree view gives us further information about the nature of the leaking
container object.

Figure 1. MDD4J has analyzed the heapdump and determined that there is a leak suspect

Chapter 6. Troubleshooting OutOfMemory Errors 31

How the IBM JVM manages memory
The IBM JVM requires memory for several different components, including
memory regions for classes, compiled code, Java objects, Java stacks, and JNI
stacks. Some of these memory regions must be in contiguous memory. Other
memory regions can be segmented into smaller memory regions and linked
together.

Dynamically loaded classes and compiled code are stored in segmented memory
regions for dynamically loaded classes. Classes are further subdivided into
writable memory regions (RAM classes) and read-only memory regions (ROM
classes). At runtime, ROM classes and AOT code from the class cache are memory
mapped, but not loaded, into a contiguous memory region on application startup.
As classes are referenced by the application, classes and compiled code in the class
cache are mapped into storage. The ROM component of the class is shared
between multiple processes referencing this class. The RAM component of the class
is created in the segmented memory regions for dynamically loaded classes when

Figure 2. MDD4J shows the heap objects of the leak suspect

32 WebSphere Real Time V2 for Linux: User Guide

the class is first referenced by the JVM. AOT-compiled code for the methods of a
class in the class cache are copied into an executable dynamic code memory region,
because this code is not shared by processes. Classes that are not loaded from the
class cache are similar to cached classes, except that the ROM class information is
created in segmented memory regions for dynamically loaded classes. Dynamically
generated code is stored in the same dynamic code memory regions that hold AOT
code for cached classes.

The stack for each Java thread can span a segmented memory region. The JNI
stack for each thread occupies a contiguous memory region.

To determine how your JVM is configured, run with the -verbose:sizes option.
This option prints out information about memory regions where you can manage
the size. For memory regions that are not contiguous, an increment is printed
describing how much memory is acquired every time the region needs to grow.

Here is example output using the -Xrealtime -verbose:sizes options:
-Xmca32K RAM class segment increment
-Xmco128K ROM class segment increment
-Xms64M initial memory size
-Xmx64M memory maximum
-Xmso256K operating system thread stack size
-Xiss2K java thread stack initial size
-Xssi16K java thread stack increment
-Xss256K java thread stack maximum size

This example indicates that the RAM class segment is initially 0, but grows by 32
KB blocks as required. The ROM class segment is initially 0, and grows by 128 KB
blocks as required. You can use the -Xmca and -Xmco options to control these
sizes. RAM class and ROM class segments grow as required, so you will not
typically need to change these options.

Use the -Xshareclasses option to determine how large your memory mapped
region will be if you use the class cache. Here is a sample of the output from the
command java -Xgcpolicy:metronome -Xshareclasses:printStats.
Current statistics for cache "sharedcc_chamlain":

base address = 0xF1BBD000
end address = 0xF2BAF000
allocation pointer = 0xF1CA95A0

cache size = 16776852
free bytes = 15499564
ROMClass bytes = 1198572
AOT bytes = 0
Data bytes = 57300
Metadata bytes = 21416
Metadata % used = 1%

ROMClasses = 368
AOT Methods = 0
Classpaths = 1
URLs = 0
Tokens = 0
Stale classes = 0
% Stale classes = 0%

Cache is 7% full

Chapter 6. Troubleshooting OutOfMemory Errors 33

34 WebSphere Real Time V2 for Linux: User Guide

Chapter 7. Problem determination

This section describes problem determination. It is intended to help you find the
kind of fault you have and from there to do one or more of the following tasks:
v Fix the problem
v Find a good workaround
v Collect the necessary data with which to generate a bug report to IBM

First steps in problem determination
Before proceeding in problem determination, there are some initial questions to be
answered.

Have you changed anything recently?
If you have changed, added, or removed software or hardware just before the
problem occurred, back out the change and see if the problem persists.

What else is running on the workstation?
If you have other software, including a firewall, try switching it off to see if the
problem persists.

Is the problem reproducible on the same workstation?
Knowing that this defect occurs every time the described steps are taken is
helpful because it indicates a straightforward programming error. If the
problem occurs at alternate times, or occasionally, thread interaction and
timing problems in general are much more likely.

Is the problem reproducible on another workstation?
A problem that is not evident on another workstation might help you find the
cause. A difference in hardware might make the problem disappear; for
example, the number of processors. Also, differences in the operating system
and application software installed might make a difference to the JVM. For
example, the visibility of a race condition in the JVM or a user Java application
might be influenced by the speed at which certain operations are performed by
the system.

Does the problem occur on multiple platforms?
If the problem occurs only on one platform, it might be related to a
platform-specific part of the JVM. Alternatively, it might be related to local
code used inside a user application. If the problem occurs on multiple
platforms, the problem might be related to the user Java application.
Alternatively, it might be related to a cross-platform part of the JVM such as
the Java Swing API. Some problems might be evident only on particular
hardware; for example, Intel 32 bit architecture. A problem on particular
hardware might indicate a JIT problem.

Can you reproduce the problem with the latest Service Refresh?
The problem might also have been fixed in a recent service refresh. Make sure
that you are using the latest service refresh for your environment. Check the
latest details on the product Web site http://www-01.ibm.com/software/
webservers/realtime/ or on http://www.ibm.com/developerWorks.

Are you using a supported Operating System (OS) with the latest patches
installed?

It is important to use a supported operating system with the latest patches

© Copyright IBM Corp. 2003, 2010 35

http://www-01.ibm.com/software/webservers/realtime/
http://www-01.ibm.com/software/webservers/realtime/
http://www.ibm.com/developerWorks

applied. For example, upgrading system libraries can solve problems. Later
versions of system software can provide a richer set of diagnostic information.
For more information, see “Problem determination” . Check for latest details
on http://www.ibm.com/developerworks.

Does turning off the JIT or AOT help?
If turning off the JIT or AOT prevents the problem, there might be a problem
with the JIT or AOT. The problem can also indicate a race condition in your
Java application that surfaces only in certain conditions. If the problem is
intermittent, reducing the JIT compilation threshold to 0 might help reproduce
the problem more consistently. (See “JIT and AOT problem determination” on
page 150.)

Have you tried reinstalling the JVM or other software and rebuilding relevant
application files?

Some problems occur from a damaged or incorrect installation of the JVM or
other software. It is also possible that an application might have inconsistent
versions of binary files or packages. Inconsistency is likely in a development or
testing environment and could potentially be solved by getting a fresh build or
installation.

Is the problem particular to a multiprocessor (or SMP) platform? If you are
working on a multiprocessor platform, does the problem still exist on a
uniprocessor platform?

This information is valuable to IBM Service.

Have you installed the latest patches for other software that interacts with the
JVM? For example, the IBM WebSphere Application Server and DB2®.

The problem might be related to configuration of the JVM in a larger
environment, and might have been solved already in a fix pack. Is the problem
reproducible when the latest patches have been installed?

Have you enabled core dumps?
Core dumps are essential to enable IBM Service to debug a problem. Core
dumps are enabled by default for the Java process. See “Using dump agents”
on page 71 for details. The operating system settings might also need to be in
place to enable the dump to be generated and to ensure that it is complete.
Details of the required settings are contained in “Problem determination” .

Are you using shared class caches?
Ensure that the name of the cache does not exceed 53 characters.

What logging information is available?
Information about any problems is produced by the JVM. You can enable more
detailed logging, and control where the logging information goes.

Problem determination
This section describes problem determination for WebSphere Real Time for Real
Time Linux.

Use the man command to obtain reference information about many of the
commands mentioned in this set of topics.

Setting up and checking your Linux environment
Linux operating systems undergo a large number of patches and updates.

36 WebSphere Real Time V2 for Linux: User Guide

http://www.ibm.com/developerworks

IBM personnel cannot test the JVM against every patch. The intention is to test
against the most recent releases of a few distributions. In general, you should keep
systems up-to-date with the latest patches.

The Java service team has a tool named ReportEnv that plugs into your JVM and
reports on the JVM environment in real time. Your JVM environment affects the
operation of the JVM. ReportEnv reports on environment variables and
command-line parameters. It is a GUI tool, although it can be run without a GUI.
The GUI allows you to browse your environment and, to some extent, dynamically
change it. The tool also has a mechanism to generate reports to tell you the exact
state of your JVM environment. The ReportEnv tool is available on request from
jvmcookbook@uk.ibm.com.

Working directory

The current working directory of the JVM process is the default location for the
generation of core files, Java dumps, heap dumps, and the JVM trace outputs,
including Application Trace and Method trace. Enough free disk space must be
available for this directory. Also, the JVM must have write permission.

Linux system dumps (core files)

When a crash occurs, the most important diagnostic data to obtain is the system
dump. To ensure that this file is generated, you must check the following settings.

Operating system settings

Operating system settings must be correct. These settings can vary by
distribution and Linux version.

To obtain full core files, set the following ulimit options:
ulimit -c unlimited turn on corefiles with unlimited size
ulimit -n unlimited allows an unlimited number of open file descriptors
ulimit -m unlimited sets the user memory limit to unlimited
ulimit -f unlimited sets the file size to unlimited

The current ulimit settings can be displayed using:
ulimit -a

These values are the "soft" limit, and are set for each user. These values
cannot exceed the "hard" limit value. To display and change the "hard"
limits, the same ulimit commands can be run using the additional -H flag.
From Java 5, the ulimit -c value for the soft limit is ignored and the hard
limit value is used to help ensure generation of the core file. You can
disable core file generation by using the -Xdump:system:none
command-line option.

Java Virtual Machine settings

To generate core files when a crash occurs, check that the JVM is set to do
so.

Run java -Xdump:what, which should produce the following:
-Xdump:system:

events=gpf+abort,
label=/mysdk/sdk/jre/bin/core.%Y%m%d.%H%M%S.%pid.dmp,
range=1..0,
priority=999,
request=serial

Chapter 7. Problem determination 37

mailto:jvmcookbook@uk.ibm.com

The values above are the default settings. At least events=gpf must be set
to generate a core file when a crash occurs. You can change and set options
with the command-line option
-Xdump:system[:name1=value1,name2=value2 ...]

Available disk space

The available disk space must be large enough for the core file to be
written.

The JVM allows the core file to be written to any directory that is specified
in the label option. For example:
-Xdump:system:label=/mysdk/sdk/jre/bin/core.%Y%m%d.%H%M%S.%pid.dmp

To write the core file to this location, disk space must be sufficient (up to 4
GB might be required for a 32-bit process), and the correct permissions for
the Java process to write to that location.

ZipException or IOException on Linux

When using a large number of file descriptors to load different instances of classes,
you might see an error message "java.util.zip.ZipException: error in opening
zip file", or some other form of IOException advising that a file could not be
opened. The solution is to increase the provision for file descriptors, using the
ulimit command. To find the current limit for open files, use the command:
ulimit -a

To allow more open files, use the command:
ulimit -n 8196

Using CPU Time limits to control runaway tasks

Because real time threads run at high priorities and with FIFO scheduling, failing
applications (typically with tight CPU-bound loops) can cause a system to become
unresponsive. In a development environment it can be useful to ensure runaway
tasks are killed by limiting the amount of CPU that tasks might consume. See
“Linux system dumps (core files)” on page 37 for a discussion on soft and hard
limit settings.

The command ulimit -t lists the current timeout value in CPU seconds. This
value can be reduced with either soft, for example, ulimit -St 900 to set the soft
timeout to 15 minutes or hard values to stop runaway tasks.
Related concepts

“Hardware and software prerequisites” on page 7
Use this list to check the hardware, operating system, and Java environment that is
supported for WebSphere Real Time for Linux.

General debugging techniques
This section provides a guide to the JVM-provided diagnostic tools and Linux
commands that can be useful when you are diagnosing problems that occur with
the Linux JVM.

Action Reference

Starting Javadumps See “Using Javadump” on page 85.

Starting Heapumps See “Using Heapdump” on page 98.

38 WebSphere Real Time V2 for Linux: User Guide

Using the dump extractor
When a system (core) dump occurs, you must use the dump extractor to prepare
the dump for analysis.

To use the dump extractor, you need:
v The system dump (core file)
v A copy of the Java executable that was running the process
v Copies of all the libraries that were in use when the system dump was created

When a system dump is generated, run the jextract utility against the system
dump:
jextract -Xgcpolicy:metronome <system dump name>

to generate a file called dumpfilename.zip in the current directory.
dumpfilename.zip is a compressed file containing the required files. Running
jextract against the system dump also allows for the subsequent use of the dump
viewer.

See “Using system dumps and the dump viewer” on page 102 for more
information.

Using system dump tools
The commands objdump and nm are used to investigate and display information
about system (core) dumps. If a crash occurs and a system dump is produced,
these commands help you analyze the file.

About this task

Run these commands on the same workstation as the one that produced the
system dumps to use the most accurate symbol information available. This output
(together with the system dump, if small enough) is used by the IBM support team
for Java to diagnose a problem.

objdump

Use this command to disassemble shared objects and libraries. After you
have discovered which library or object has caused the problem, use
objdump to locate the method in which the problem originates. To start
objdump, enter: objdump <option> <filename>

You can see a complete list of options by typing objdump -H. The -d option
disassembles contents of executable sections

nm This command lists symbol names from object files. These symbol names
can be either functions, global variables, or static variables. For each
symbol, the value, symbol type, and symbol name are displayed. Lower
case symbol types mean the symbol is local, while upper case means the
symbol is global or external. To use this tool, type: nm <option> <system
dump>.

Examining process information
The kernel provides useful process and environment information. These commands
can be used to view this information.

The ps command

On Linux, Java threads are implemented as system threads and might be visible in
the process table, depending on the Linux distribution.

Chapter 7. Problem determination 39

Running the ps command gives you a snapshot of the current processes. The ps
command gets its information from the /proc file system. From WebSphere Real
Time for Linux V2 SR3, Java thread names are visible in the operating system,
although the full thread name might be truncated. Here is an example of using ps:
ps -eLo pid,tid,rtprio,comm,cmd
13654 13654 - java jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13655 - main jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13656 - Signal Reporter jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13661 - JIT Compilation jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13662 - JIT Sampler jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13666 - Signal Dispatch jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13667 - Finalizer maste jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13668 - Gc Slave Thread jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13669 - Gc Slave Thread jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13670 - Gc Slave Thread jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13671 - Gc Slave Thread jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13672 - Metronome GC Al jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13673 - Thread-2 jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13698 - process reaper jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13700 - stdout reader j jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13701 - stderr reader j jre/bin/java -Xgcpolicy:metronome -jar example.jar

e Selects all processes.

L Shows threads.

o Provides a pre-defined format of columns to display. The columns
specified are the process ID, thread ID, scheduling policy, real-time thread
priority, and the command associated with the process. This information is
useful for understanding what threads in your application as well as the
virtual machine are running at a given time.

The top command

The top command displays the most CPU-intensive or memory-intensive processes
in real time. It provides an interactive interface for manipulation of processes and
allows sorting by different criteria, such as CPU usage or memory usage. Press h
while running top to see all the available interactive commands.

The top command displays several fields of information for each process. The
process field shows the total number of processes that are running, but breaks
down the information into tasks that are running, sleeping, stopped, or undead. In
addition to displaying PID, PPID, and UID, the top command displays information
about memory usage and swap space. The mem field shows statistics on memory
usage, including available memory, free memory, used memory, shared memory,
and memory used for buffers. The swap field shows total swap space, available
swap space, and used swap space.

The vmstat command

The vmstat command reports virtual storage statistics. It is useful to perform a
general health check on your system because it reports on the system as a whole.
Commands such as top can be used to gain more specific information about the
process operation.

When you use it for the first time during a session, the information is reported as
averages since the last reboot. Further usage produces reports that are based on a
sampling period that you can specify as an option. vmstat 3 4 displays values

40 WebSphere Real Time V2 for Linux: User Guide

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

every 3 seconds for a count of four times. It might be useful to start vmstat before
the application, have it direct its output to a file and later study the statistics as the
application started and ran.

The basic output from this command is displayed in these sections:

processes
Shows how many processes are awaiting run time, blocked, or swapped
out.

memory
Shows the amount of memory (in kilobytes) swapped, free, buffered, and
cached. If the free memory is going down during certain stages of your
applications execution, there might be a memory leak.

swap Shows the kilobytes per second of memory swapped in from and swapped
out to disk. Memory is swapped out to disk if not enough RAM is
available to store it all. Large values here can be a hint that not enough
RAM is available (although it is normal to get swapping when the
application first starts).

io Shows the number of blocks per second of memory sent to and received
from block devices.

system
Displays the interrupts and the context switches per second. There is a
performance penalty associated with each context switch so a high value
for this section might mean that the program does not scale well.

cpu Shows a breakdown of processor time between user time, system time, and
idle time. The idle time figure shows how busy a processor is, with a low
value indicating that the processor is busy. You can use this knowledge to
help you understand which areas of your program are using the CPU the
most.

ldd
The Linux command ldd prints information that should help you to work out the
shared library dependency of your application.

Tracing tools
Tracing is a technique that presents details of the execution of your program. If
you are able to follow the path of execution, you will gain a better insight into
how your program runs and interacts with its environment.

Also, you will be able to pinpoint locations where your program starts to deviate
from its expected behavior.

Three tracing tools on Linux are strace, ltrace, and mtrace. The command man
strace displays a full set of available options.

strace
The strace tool traces system calls. You can either use it on a process that is
already available, or start it with a new process. strace records the system calls
made by a program and the signals received by a process. For each system call,
the name, arguments, and return value are used. strace allows you to trace a
program without requiring the source (no recompilation is required). If you use
strace with the -f option, it will trace child processes that have been created as
a result of a forked system call. You can use strace to investigate plug-in
problems or to try to understand why programs do not start properly.

Chapter 7. Problem determination 41

To use strace with a Java application, type strace java -Xgcpolicy:metronome
<class-name>.

You can direct the trace output from the strace tool to a file by using the -o
option.

ltrace
The ltrace tool is distribution-dependent. It is very similar to strace. This tool
intercepts and records the dynamic library calls as called by the executing
process. strace does the same for the signals received by the executing process.

To use ltrace with a Java application, type ltrace java -Xgcpolicy:metronome
<class-name>

mtrace
mtrace is included in the GNU toolset. It installs special handlers for malloc,
realloc, and free, and enables all uses of these functions to be traced and
recorded to a file. This tracing decreases program efficiency and should not be
enabled during normal use. To use mtrace, set IBM_MALLOCTRACE to 1,
and set MALLOC_TRACE to point to a valid file where the tracing
information will be stored. You must have write access to this file.

To use mtrace with a Java application, type:
export IBM_MALLOCTRACE=1
export MALLOC_TRACE=/tmp/file
java -Xgcpolicy:metronome <class-name>
mtrace /tmp/file

Debugging with gdb
The GNU debugger (gdb) allows you to examine the internals of another program
while the program executes or retrospectively to see what a program was doing at
the moment that it crashed.

The gdb allows you to examine and control the execution of code and is useful for
evaluating the causes of crashes or general incorrect behavior. gdb does not handle
Java processes, so it is of limited use on a pure Java program. It is useful for
debugging native libraries and the JVM itself.

Running gdb

You can run gdb in three ways:

Starting a program
Typically the command: gdb <application> is used to start a program under
the control of gdb. However, because of the way that Java is launched, you
must start gdb by setting an environment variable and then calling Java:
export IBM_JVM_DEBUG_PROG=gdb
java

Then you receive a gdb prompt, and you supply the run command and the
Java arguments:
r <java_arguments>

Attaching to a running program
If a Java program is already running, you can control it under gdb. The
process ID of the running program is required, and then gdb is started with
the Java application as the first argument and the process ID as the second
argument:
gdb <Java Executable> <PID>

42 WebSphere Real Time V2 for Linux: User Guide

When gdb is attached to a running program, this program is halted and its
position in the code is displayed for the viewer. The program is then under the
control of gdb and you can start to issue commands to set and view the
variables and generally control the execution of the code.

Running on a system dump (corefile)
A system dump is typically produced when a program crashes. gdb can be run
on this system dump. The system dump contains the state of the program
when the crash occurred. Use gdb to examine the values of all the variables
and registers leading up to a crash. This information helps you discover what
caused the crash. To debug a system dump, start gdb with the Java application
file as the first argument and the system dump name as the second argument:
gdb <Java Executable> <system dump>

When you run gdb against a system dump, it initially shows information such
as the termination signal the program received, the function that was executing
at the time, and even the line of code that generated the fault.

When a program comes under the control of gdb, a welcome message is displayed
followed by a prompt (gdb). The program is now waiting for you to enter
instructions. For each instruction, the program continues in whichever way you
choose.

Setting breakpoints and watchpoints

Breakpoints can be set for a particular line or function using the command:
break linenumber

or
break functionName

After you have set a breakpoint, use the continue command to allow the program
to execute until it reaches a breakpoint.

Set breakpoints using conditionals so that the program halts only when the
specified condition is reached. For example, using breakpoint 39 if var == value
causes the program to halt when it reaches line 39, but only if the variable is equal
to the specified value.

If you want to know where as well as when a variable became a certain value you
can use a watchpoint. Set the watchpoint when the variable in question is in scope.
After doing so, you will be alerted whenever this variable attains the specified
value. The syntax of the command is: watch var == value.

To see which breakpoints and watchpoints are set, use the info command:
info break
info watch

When gdb reaches a breakpoint or watchpoint, it prints out the line of code it is
next set to execute. Setting a breakpoint at line 8 will cause the program to halt
after completing execution of line 7 but before execution of line 8. As well as
breakpoints and watchpoints, the program also halts when it receives certain
system signals. By using the following commands, you can stop the debugging
tool halting every time it receives these system signals:
handle sig32 pass nostop noprint
handle sigusr2 pass nostop noprint

Chapter 7. Problem determination 43

Examining the code

When the correct position of the code has been reached, there are a number of
ways to examine the code. The most useful is backtrace (abbreviated to bt), which
shows the call stack. The call stack is the collection of function frames, where each
function frame contains information such as function parameters and local
variables. These function frames are placed on the call stack in the order that they
are executed. This means that the most recently called function is displayed at the
top of the call stack. You can follow the trail of execution of a program by
examining the call stack. When the call stack is displayed, it shows a frame
number on the left side, followed by the address of the calling function, followed
by the function name and the source file for the function. For example:
#6 0x804c4d8 in myFunction () at myApplication.c

To view more detailed information about a function frame, use the frame command
along with a parameter specifying the frame number. After you have selected a
frame, you can display its variables using the command print var.

Use the print command to change the value of a variable; for example, print var
= newValue.

The info locals command displays the values of all local variables in the selected
function.

To follow the exact sequence of execution of your program, use the step and next
commands. Both commands take an optional parameter specifying the number of
lines to execute. However, next treats function calls as a single line of execution,
while step progresses through each line of the called function, one step at a time.

Useful commands

When you have finished debugging your code, the run command causes the
program to run through to its end or its crash point. The quit command is used to
exit gdb.

Other useful commands are:

ptype
Prints data type of variable.

info share
Prints the names of the shared libraries that are currently loaded.

info functions
Prints all the function prototypes.

list
Shows the 10 lines of source code around the current line.

help
Displays a list of subjects, each of which can have the help command called on
it, to display detailed help on that topic.

44 WebSphere Real Time V2 for Linux: User Guide

Related information

“Using system dumps and the dump viewer” on page 102
The JVM can generate native system dumps, also known as core dumps, under
configurable conditions. System dumps are typically quite large. Use the gdb tool
to analyze a system dump on Linux.

Diagnosing crashes
Many approaches are possible when you are trying to determine the cause of a
crash. The process typically involves isolating the problem by checking the system
setup and trying various diagnostic options.

Checking the system environment

The system might have been in a state that has caused the JVM to crash. For
example, this could be a resource shortage (such as memory or disk) or a stability
problem. Check the Javadump file, which contains various system information (as
described in “Using Javadump” on page 85). The Javadump file tells you how to
find disk and memory resource information. The system logs can give indications
of system problems.

Gathering process information

It is useful to find out what exactly was happening leading up to the crash.

Use gdb and the bt command to display the stack trace of the failing thread and
show what was running up to the point of the crash. This could be:
v JNI native code.
v JIT or AOT compiled code. If you have a problem with JIT or AOT code, try

running without the JIT or AOT code by using the -Xint option.
v JVM code.

Other tracing methods:
v ltrace
v strace
v mtrace - can be used to track memory calls and determine possible corruption
v RAS trace, described in Using the Reliability, Availability, and Servicability Interface

in the Diagnostics Guide.

Finding out about the Java environment

Use the Javadump to determine what each thread was doing and which Java
methods were being executed. Match function addresses against library addresses
to determine the source of code executing at various points.

Use the -verbose:gc option to look at the state of the Java heap and determine if:
v There was a shortage of memory in one of the memory areas and if this could

have caused the crash.
v The crash occurred during garbage collection, indicating a possible garbage

collection fault.
v The crash occurred after garbage collection, indicating a possible memory

corruption.

Chapter 7. Problem determination 45

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

Debugging hangs
A hang is caused by a wait (also known as a deadlock) or a loop (also known as a
livelock). A deadlock sometimes occurs because of a wait on a lock or monitor. A
loop can occur similarly or sometimes because of an algorithm making little or no
progress towards completion.

A wait could either be caused by a timing error leading to a missed notification, or
by two threads deadlocking on resources.

For an explanation of deadlocks and diagnosing them using a Javadump, see
“Locks, monitors, and deadlocks (LOCKS)” on page 91.

A loop is caused by a thread failing to exit a loop in a timely manner. This might
be because it calculated the wrong limit value or missed a flag that was intended
to exit the loop. This problem might only occur on multi-processor workstations
and if this is the case it can usually be traced to a failure to make the flag volatile
or access it whilst holding an appropriate monitor.

The following approaches are useful to resolve waits and loops:
v Monitoring process and system state (as described in “MustGather information

for Linux” on page 49).
v Javadumps give monitor and lock information. You can trigger a Javadump

during a hang by using the kill -QUIT <PID> command.

Debugging memory leaks
If dynamically allocated objects are not freed at the end of their lifetime, memory
leaks can occur. When objects that should have had their memory released are still
holding memory and more objects are being created, the system eventually runs
out of memory.

The mtrace tool from GNU is available for tracking memory calls. This tool enables
you to trace memory calls such as malloc and realloc so that you can detect and
locate memory leaks.

For more details about analyzing the Java Heap, see “Using Heapdump” on page
98.

Debugging performance problems
Locating the causes of poor performance is often difficult. Although many factors
can affect performance, the overall effect is generally perceived as poor response or
slow execution of your program.

Correcting one performance problem might cause more problems in another area.
By finding and correcting a bottleneck in one place you might only shift the cause
of poor performance to other areas. To improve performance, experiment with
tuning different parameters, monitoring the effect, and retuning until you are
satisfied that your system is performing acceptably.

Finding the bottleneck
Given that any performance problem could be caused by any one of several
factors, you must look at several areas to eliminate each one.

Determine which resource is constraining the system:
v CPU

46 WebSphere Real Time V2 for Linux: User Guide

v Memory
v Input/Output (I/O)

Several tools are available that enable you to measure system components and
establish how they are performing and under what kind of workload.

The key things to measure are CPU usage and memory usage. If the CPU is not
powerful enough to handle the workload, it will be impossible to tune the system
to make much difference to overall performance. You must upgrade the CPU.
Similarly, if a program is running in an environment without enough memory, an
increase in the memory improves performance far more than any amount of
tuning.

CPU usage
Java processes consume 100% of processor time when they reach their resource
limits. Ensure that ulimit settings are appropriate to the application requirement.

See “Linux system dumps (core files)” on page 37 for more information about
ulimit.

The /proc file system provides information about all the processes that are running
on your system, including the Linux kernel. See man proc from a Linux shell for
official Linux documentation about the /proc file system.

The top command provides real-time information about your system processes.
The top command is useful for getting an overview of the system load. It clearly
displays which processes are using the most resources. Having identified the
processes that are probably causing a degraded performance, you can take further
steps to improve the overall efficiency of your program. More information is
provided about the top command in “The top command” on page 40.

Memory usage
If a system is performing poorly because of lack of memory resources, it is
memory bound. By viewing the contents of /proc/meminfo, you can view your
memory resources and see how they are being used. /proc/swap contains
information on your swap file.

Swap space is used as an extension of the systems virtual storage. Therefore, not
having enough memory or swap space causes performance problems. A general
guideline is that swap space should be at least twice as large as the physical
memory.

A swap space can be either a file or disk partition. A disk partition offers better
performance than a file does. fdisk and cfdisk are the commands that you use to
create another swap partition. It is a good idea to create swap partitions on
different disk drives because this distributes the I/O activities and thus reduces the
chance of further bottlenecks.

The vmstat tool helps you find where performance problems might be caused. For
example, if you see that high swap rates are occurring, you probably do not have
enough physical or swap space. The free command displays your memory
configuration; swapon -s displays your swap device configuration. A high swap
rate (for example, many page faults) means that you probably need to increase
your physical memory. More information about the vmstat command are provided
in “The vmstat command” on page 40.

Chapter 7. Problem determination 47

Network problems
Another area that often affects performance is the network. Obviously, the more
you know about the behavior of your program, the easier it is for you to decide
whether this is a likely source of performance bottleneck.

If you think that your program is likely to be network I/O bound, netstat is a
useful tool. In addition to providing information about network routes, netstat
gives a list of active sockets for each network protocol and can give overall
statistics, such as the number of packets that are received and sent.

Using netstat, you can see how many sockets are in a CLOSE_WAIT or
ESTABLISHED state and you can tune the TCP/IP parameters accordingly for
better performance of the system. For example, tuning /proc/sys/net/ipv4/
tcp_keepalive_time will reduce the time for socket waits in TIMED_WAIT state
before closing a socket.

If you are tuning the /proc/sys/net file system, the effect will be on all the
applications running on the system. To make a change to an individual socket or
connection, use Java Socket API calls (on the appropriate socket object). Use
netstat -p (or the lsof command) to find the PID of the process that owns a
particular socket and its stack trace from a javacore file taken with the kill -QUIT
<pid> command.

You can also use IBM's RAS trace, -Xtrace:print=net, to trace out network-related
activity in the JVM. This technique is helpful when socket-related Java thread
hangs are seen. Correlating output from netstat -p, lsof, JVM net trace, and ps
-efH can help you to diagnose the network-related problems.

Providing summary statistics that are related to your network is useful for
investigating programs that might be under-performing because of TCP/IP
problems. The more you understand your hardware capacity, the easier it is for
you to tune with confidence the parameters of particular system components that
will improve the overall performance of your application. You can also determine
whether tuning the system noticeably improves performance or whether you
require system upgrades.

Sizing memory areas
The Java heap size is one of the most important tuning parameters of your JVM.
Choose the correct size to optimize performance. Using the correct size can make it
easier for the Garbage Collector to provide the required utilization.

For more information about varying the size of the memory areas see
“Troubleshooting the Metronome Garbage Collector” on page 20.

JIT compilation and performance
The JIT is another area that can affect the performance of your program. When
deciding whether or not to use JIT compilation, you must make a balance between
faster execution and increased processor usage during compilation. When using the
JIT, you should consider the implications to real-time behavior.

48 WebSphere Real Time V2 for Linux: User Guide

Related information

“JIT and AOT problem determination” on page 150
You can use command-line options to help diagnose JIT and AOT compiler
problems and to tune performance.

Application profiling
You can learn a lot about your Java application by using the hprof profiling agent.
Statistics about CPU and memory usage are presented along with many other
options.

The hprof tool is discussed in detail in

The -Xrunhprof:help command-line option displays a list of suboptions that you
can use with hprof.

The Performance Inspector package contains a suite of performance analysis tools
for Linux. You can use tools to help identify performance problems in your
application as well as to understand how your application interacts with the Linux
kernel. See http://perfinsp.sourceforge.net/ for details.

MustGather information for Linux
When a problem occurs, the more information known about the state of the system
environment, the easier it is to reach a diagnosis of the problem.

A large set of information can be collected, although only some of it will be
relevant for particular problems. The following sections tell you the data to collect
to help the IBM service team for Java solve the problem.

Collecting system dumps (core files)

Collect system dumps to help diagnose many types of problem. Process the system
dump with jextract. The resultant xml file is useful for service (see “Using the
dump viewer” on page 104).

Producing system dumps

You can use the -Xdump:system command line option to obtain system dumps
based on a trigger. See “Using dump agents” on page 71 for more information.

You can also use a Linux system utility to generate system dumps:
1. Determine the Process ID of your application using the ps command. See “The

ps command” on page 39.
2. At a shell prompt, type gcore -o <dump file name> <pid>

A system dump file is produced for your application. The application will be
suspended while the system dump is written.

Process the system dump with jextract. The resultant jar file is useful for service
(see “Using the dump viewer” on page 104).

Producing Javadumps

In some conditions, a crash, for example, a Javadump is produced, usually in the
current directory.

Chapter 7. Problem determination 49

http://perfinsp.sourceforge.net/

In others for example, a hang, you might have to prompt the JVM for this by
sending the JVM a SIGQUIT symbol:
1. Determine the Process ID of your application using the ps command. See “The

ps command” on page 39.
2. At a shell prompt, type kill -QUIT <pid>

This is discussed in more detail in “Using Javadump” on page 85.

Producing Heapdumps

The JVM can generate a Heapdump at the request of the user, for example by
calling com.ibm.jvm.Dump.HeapDump() from inside the application, or by default
when the JVM terminates because of an OutOfMemoryError. You can specify finer
control of the timing of a Heapdump with the -Xdump:heap option. For example,
you could request a heapdump after a certain number of full garbage collections
have occurred. The default heapdump format (phd files) is not human-readable
and you process it using available tools such as Heaproots.

Producing Snap traces

Under default conditions, a running JVM collects a small amount of trace data in a
special wraparound buffer. This data is dumped to file when the JVM terminates
unexpectedly or an OutOfMemoryError occurs. You can use the -Xdump:snap
option to vary the events that cause a snap trace to be produced. The snap trace is
in normal trace file format and requires the use of the supplied standard trace
formatter so that you can read it. See “Snap traces” on page 76 for more
information about the contents and control of snap traces.

Using system logs

The kernel logs system messages and warnings. The system log is located in the
/var/log/messages file. Use it to observe the actions that led to a particular
problem or event. The system log can also help you determine the state of a
system. Other system logs are in the /var/log directory.

Determining the operating environment

This section looks at the commands that can be useful to determine the operating
environment of a process at various stages of its life-cycle.

uname -a
Displays operating system and hardware information.

df Displays free disk space on a system.

free
Displays memory use information.

ps -eLo pid,tid,policy,rtprio,comm,command
Displays a full process list.

lsof
Displays open file handles.

top
Displays process information (such as processor, memory, states) sorted by
default by processor usage.

50 WebSphere Real Time V2 for Linux: User Guide

vmstat
Displays general memory and paging information.

The uname, df, and free output is the most useful. The other commands can be run
before and after a crash or during a hang to determine the state of a process and to
provide useful diagnostic information.

Sending information to Java Support

When you have collected the output of the commands listed in the previous
section, put that output into files.

Compress the files (which could be very large) before sending them to Java
Support. You should compress the files at a very high ratio.

The following command builds an archive from files {file1,..,fileN} and compresses
them to a file with a name in the format filename.tgz:
tar czf filename.tgz file1 file2...filen

Collecting additional diagnostic data

Depending on the type of problem, the following data can also help you diagnose
problems. The information available depends on the way in which Java is started
and also the system environment. You will probably have to change the setup and
then restart Java to reproduce the problem with these debugging aids switched on.

/proc file system

The /proc file system gives direct access to kernel level information. The
/proc/<pid> directory contains detailed diagnostic information about the process
with PID (process id) <pid>, where <pid> is the id of the process.

The command cat /proc/<pid>/maps lists memory segments (including native
heap) for a given process.

strace, ltrace, and mtrace

Use the commands strace, ltrace, and mtrace to collect further diagnostic data. See
“Tracing tools” on page 41.

Known limitations on Linux
Linux has been under rapid development and there have been various issues with
the interaction of the JVM and the operating system, particularly in the area of
threads.

Note the following limitations that might be affecting your Linux system.

Threads as processes

If the number of Java threads exceeds the maximum number of processes allowed,
your program might:
v Get an error message
v Get a SIGSEGV error
v Stop

Chapter 7. Problem determination 51

For more information, see The Volano Report at http://www.volano.com/report/
index.html.

Floating stacks limitations

If you are running without floating stacks, regardless of what is set for -Xss, a
minimum native stack size of 256 KB for each thread is provided.

On a floating stack Linux system, the -Xss values are used. If you are migrating
from a non-floating stack Linux system, ensure that any -Xss values are large
enough and are not relying on a minimum of 256 KB.

glibc limitations

If you receive a message indicating that the libjava.so library could not be loaded
because of a symbol not found (such as __bzero), you might have an earlier
version of the GNU C Runtime Library, glibc, installed. The SDK for Linux thread
implementation requires glibc version 2.3.2 or greater.

Font limitations

When you are installing on a Red Hat system, to allow the font server to find the
Java TrueType fonts, run (on Linux IA32, for example):
/usr/sbin/chkfontpath --add /opt/ibm/ibm-srt-i386-60/jre/lib/fonts

You must do this at installation time and you must be logged on as “root” to run
the command. For more detailed font issues, see the Linux SDK and Runtime
Environment User Guide.

Linux Completely Fair Scheduler affects Java performance

Java applications that use synchronization extensively might perform poorly on
Linux distributions that include the Completely Fair Scheduler. The Completely
Fair Scheduler (CFS) is a scheduler that was adopted into the mainline Linux
kernel as of release 2.6.23. The CFS algorithm is different from the scheduling
algorithms for previous Linux releases. It might change the performance properties
of some applications. In particular, CFS implements sched_yield() differently,
making it more likely that a yielding thread is given CPU time regardless.

If you encounter this problem, you might observe high CPU usage by your Java
application, and slow progress through synchronized blocks. The application might
seem to stop because of the slow progress.

There are two possible workarounds:
v Start the JVM with the additional argument -Xthr:minimizeUserCPU.
v Configure the Linux kernel to use an implementation of sched_yield() that is

more compatible with earlier versions. Do this by setting the
sched_compat_yield tunable kernel property to 1. For example:
echo "1" > /proc/sys/kernel/sched_compat_yield

Do not use these workarounds unless you are experiencing poor performance.

This problem might affect IBM Developer Kit and Runtime Environment for Linux
5.0 (all versions) and 6.0 (all versions up to and including SR 4) running on Linux
kernels that include the Completely Fair Scheduler. For IBM Developer Kit and
Runtime Environment for Linux version 6.0 after SR 4, the use of CFS in the kernel

52 WebSphere Real Time V2 for Linux: User Guide

http://www.volano.com/report/index.html
http://www.volano.com/report/index.html

is detected and the option -Xthr:minimizeUserCPU enabled automatically. Some
Linux distributions that include the Completely Fair Scheduler are Ubuntu 8.04
and SUSE Linux Enterprise Server 11.

More information about CFS can be found at Multiprocessing with the Completely
Fair Scheduler.

Performance issues on Linux Red Hat MRG kernels

A configuration issue with Red Hat MRG kernels can cause unexpected pauses to
application threads when WebSphere Real Time starts with verbose garbage
collection enabled. These pauses are not reported in the verbose GC output, but
can last several milliseconds, depending on the network configuration. JVMs
started from remotely defined LDAP users are affected the most, because the name
service cache daemon (nscd) is not started, causing network delays. Solve the
problem by starting nscd. Follow these steps to check on the status of the nscd
service and correct the problem:
1. Check that the nscd daemon is running by typing the command:

/sbin/service nscd status

If the daemon is not running you see the following message:
nscd is stopped

2. As root user, start the nscd service with the following command:
/sbin/service nscd start

3. As root user, change the startup information for the nscd service with the
following command:
/sbin/chkconfig nscd on

The nscd process is now running, and starts automatically after reboot.

ORB problem determination
One of your first tasks when debugging an ORB problem is to determine whether
the problem is in the client-side or in the server-side of the distributed application.
Think of a typical RMI-IIOP session as a simple, synchronous communication
between a client that is requesting access to an object, and a server that is
providing it.

During this communication, a problem might occur in the execution of one of the
following steps:
1. The client writes and sends a request to the server.
2. The server receives and reads the request.
3. The server executes the task in the request.
4. The server writes and sends a reply back.
5. The client receives and reads the reply.

It is not always easy to identify where the problem occurred. Often, the
information that the application returns, in the form of stack traces or error
messages, is not enough for you to make a decision. Also, because the client and
server communicate through their ORBs, if a problem occurs, both sides will
probably record an exception or unusual behavior.

This section describes all the clues that you can use to find the source of the ORB
problem. It also describes a few common problems that occur more frequently.

Chapter 7. Problem determination 53

http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux
http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux

Identifying an ORB problem
A background of the constituents of the IBM ORB component.

What the ORB component contains

The ORB component contains the following:
v Java ORB from IBM and rmi-iiop runtime (com.ibm.rmi.*, com.ibm.CORBA.*)
v RMI-IIOP API (javax.rmi.CORBA.*,org.omg.CORBA.*)
v IDL to Java implementation (org.omg.* and IBM versions com.ibm.org.omg.*)
v Transient name server (com.ibm.CosNaming.*, org.omg.CosNaming.*) -

tnameserv
v -iiop and -idl generators (com.ibm.tools.rmi.rmic.*) for the rmic compiler - rmic
v idlj compiler (com.ibm.idl.*)

What the ORB component does not contain

The ORB component does not contain:
v RMI-JRMP (also known as Standard RMI)
v JNDI and its plug-ins

Therefore, if the problem is in java.rmi.* or sun.rmi.*, it is not an ORB problem.
Similarly, if the problem is in com.sun.jndi.*, it is not an ORB problem.

Platform dependent problems

If possible, run the test case on more than one platform. All the ORB code is
shared. You can nearly always reproduce genuine ORB problems on any platform.
If you have a platform-specific problem, it is likely to be in some other component.

JIT problem

JIT bugs are very difficult to find. They might show themselves as ORB problems.
When you are debugging or testing an ORB application, it is always safer to switch
off the JIT by setting the option -Xint.

Fragmentation

Disable fragmentation when you are debugging the ORB. Although fragmentation
does not add complications to the ORB's functioning, a fragmentation bug can be
difficult to detect because it will most likely show as a general marshalling
problem. The way to disable fragmentation is to set the ORB property
com.ibm.CORBA.FragmentSize=0. You must do this on the client side and on the
server side.

ORB versions

The ORB component carries a few version properties that you can display by
calling the main method of the following classes:
1. com.ibm.CORBA.iiop.Version (ORB runtime version)
2. com.ibm.tools.rmic.iiop.Version (for tools; for example, idlj and rmic)
3. rmic -iiop -version (run the command line for rmic)

54 WebSphere Real Time V2 for Linux: User Guide

Limitation with bidirectional GIOP

Bidirectional GIOP is not supported.

Debug properties
Properties to use to enable ORB traces.

Attention: Do not enable tracing for normal operation, because it might cause
performance degradation. Even if you have switched off tracing, FFDC (First
Failure Data Capture) is still working, so that only serious errors are reported. If a
debug file is produced, examine it to check on the problem. For example, the
server might have stopped without performing an ORB.shutdown().

You can use the following properties to enable the ORB traces:
v com.ibm.CORBA.Debug: This property turns on trace, message, or both. If you

set this property to trace, only traces are enabled; if set to message, only
messages are enabled. When set to true, both types are enabled; when set to
false, both types are disabled. The default is false.

v com.ibm.CORBA.Debug.Output: This property redirects traces to a file, which
is known as a trace log. When this property is not specified, or it is set to an
empty string, the file name defaults to the format
orbtrc.DDMMYYYY.HHmm.SS.txt, where D=Day; M=Month; Y=Year; H=Hour
(24 hour format); m=Minutes; S=Seconds. Note that if the application (or Applet)
does not have the privilege that it requires to write to a file, the trace entries go
to stderr.

v com.ibm.CORBA.CommTrace: This property turns on wire tracing. Every
incoming and outgoing GIOP message will be sent to the trace log. You can set
this property independently from Debug; this property is useful if you want to
look only at the flow of information, and you are not interested in debugging
the internals. The only two values that this property can have are true and false.
The default is false.

Here is an example of common usage:

For rmic -iiop or rmic -idl, the following diagnostic tools are available:
v -J-Djavac.dump.stack=1: This tool ensures that all exceptions are caught.
v -Xtrace: This tool traces the progress of the parse step.

If you are working with an IBM SDK, you can obtain CommTrace for the transient
name server (tnameserv) by using the standard environment variable
IBM_JAVA_OPTIONS. In a separate command session to the server or client
SDKs, you can use:

export IBM_JAVA_OPTIONS=-Dcom.ibm.CORBA.CommTrace=true -Dcom.ibm.CORBA.Debug=true

The setting of this environment variable affects each Java process that is started, so
use this variable carefully. Alternatively, you can use the -J option to pass the
properties through the tnameserv wrapper, as follows:
tnameserv -J-Dcom.ibm.CORBA.Debug=true

ORB exceptions
The exceptions that can be thrown are split into user and system categories.

java -Dcom.ibm.CORBA.Debug=true -Dcom.ibm.CORBA.Debug.Output=trace.log -Dcom.ibm.CORBA.CommTrace=true <classname>

Chapter 7. Problem determination 55

If your problem is related to the ORB, unless your application is doing nothing or
giving you the wrong result, your log file or terminal is probably full of exceptions
that include the words “CORBA” and “rmi” many times. All unusual behavior that
occurs in a good application is highlighted by an exception. This principle also
applies for the ORB with its CORBA exceptions. Similarly to Java, CORBA divides
its exceptions into user exceptions and system exceptions.

User exceptions

User exceptions are IDL defined and inherit from org.omg.CORBA.UserException.
These exceptions are mapped to checked exceptions in Java; that is, if a remote
method raises one of them, the application that called that method must catch the
exception. User exceptions are usually not fatal exceptions and should always be
handled by the application. Therefore, if you get one of these user exceptions, you
know where the problem is, because the application developer had to make
allowance for such an exception to occur. In most of these cases, the ORB is not the
source of the problem.

System exceptions

System exceptions are thrown transparently to the application and represent an
unusual condition in which the ORB cannot recover gracefully, such as when a
connection is dropped. The CORBA 2.6 specification defines 31 system exceptions
and their mapping to Java. They all belong to the org.omg.CORBA package. The
CORBA specification defines the meaning of these exceptions and describes the
conditions in which they are thrown.

The most common system exceptions are:
v BAD_OPERATION: This exception is thrown when an object reference denotes

an existing object, but the object does not support the operation that was called.
v BAD_PARAM: This exception is thrown when a parameter that is passed to a

call is out of range or otherwise considered not valid. An ORB might raise this
exception if null values or null pointers are passed to an operation.

v COMM_FAILURE: This exception is raised if communication is lost while an
operation is in progress, after the request was sent by the client, but before the
reply from the server has been returned to the client.

v DATA_CONVERSION: This exception is raised if an ORB cannot convert the
marshaled representation of data into its native representation, or cannot convert
the native representation of data into its marshaled representation. For example,
this exception can be raised if wide character codeset conversion fails, or if an
ORB cannot convert floating point values between different representations.

v MARSHAL: This exception indicates that the request or reply from the network
is structurally not valid. This error typically indicates a bug in either the
client-side or server-side runtime. For example, if a reply from the server
indicates that the message contains 1000 bytes, but the actual message is shorter
or longer than 1000 bytes, the ORB raises this exception.

v NO_IMPLEMENT: This exception indicates that although the operation that was
called exists (it has an IDL definition), no implementation exists for that
operation.

v UNKNOWN: This exception is raised if an implementation throws a
non-CORBA exception, such as an exception that is specific to the
implementation's programming language. It is also raised if the server returns a
system exception that is unknown to the client. If the server uses a later version

56 WebSphere Real Time V2 for Linux: User Guide

of CORBA than the version that the client is using, and new system exceptions
have been added to the later version this exception can happen.

Completion status and minor codes
Two pieces of data are associated with each system exception, these are described
in this section.
v A completion status, which is an enumerated type that has three values:

COMPLETED_YES, COMPLETED_NO and COMPLETED_MAYBE. These values
indicate either that the operation was executed in full, that the operation was
not executed, or that the execution state cannot be determined.

v A long integer, called minor code, that can be set to some ORB vendor-specific
value. CORBA also specifies the value of many minor codes.

Usually the completion status is not very useful. However, the minor code can be
essential when the stack trace is missing. In many cases, the minor code identifies
the exact location of the ORB code where the exception is thrown and can be used
by the vendor's service team to localize the problem quickly. However, for
standard CORBA minor codes, this is not always possible. For example:

org.omg.CORBA.OBJECT_NOT_EXIST: SERVANT_NOT_FOUND minor code: 4942FC11 completed: No

Minor codes are usually expressed in hexadecimal notation (except for Sun's minor
codes, which are in decimal notation) that represents four bytes. The OMG
organization has assigned to each vendor a range of 4096 minor codes. The IBM
vendor-specific minor code range is 0x4942F000 through 0x4942FFFF.

System exceptions might also contain a string that describes the exception and
other useful information. You will see this string when you interpret the stack
trace.

The ORB tends to map all Java exceptions to CORBA exceptions. A runtime
exception is mapped to a CORBA system exception, while a checked exception is
mapped to a CORBA user exception.

More exceptions other than the CORBA exceptions could be generated by the ORB
component in a code bug. All the Java unchecked exceptions and errors and others
that are related to the ORB tools rmic and idlj must be considered. In this case, the
only way to determine whether the problem is in the ORB, is to look at the
generated stack trace and see whether the objects involved belong to ORB
packages.

Java security permissions for the ORB
When running with a Java SecurityManager, invocation of some methods in the
CORBA API classes might cause permission checks to be made that could result in
a SecurityException.

The following table shows methods affected when running with Java 2
SecurityManager:

Class/Interface Method Required permission

org.omg.CORBA.ORB init java.net.SocketPermission
resolve

Chapter 7. Problem determination 57

Class/Interface Method Required permission

org.omg.CORBA.ORB connect java.net.SocketPermission
listen

org.omg.CORBA.ORB resolve_initial_references java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_is_a java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_non_existent java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

OutputStream _request
(String, boolean)

java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_get_interface_def java.net.SocketPermission
connect

org.omg.CORBA.
Request

invoke java.net.SocketPermission
connect

org.omg.CORBA.
Request

send_deferred java.net.SocketPermission
connect

org.omg.CORBA.
Request

send_oneway java.net.SocketPermission
connect

javax.rmi.
PortableRemoteObject

narrow java.net.SocketPermission
connect

If your program uses any of these methods, ensure that it is granted the necessary
permissions.

Interpreting the stack trace
Whether the ORB is part of a middleware application or you are using a Java
stand-alone application (or even an applet), you must retrieve the stack trace that
is generated at the moment of failure. It could be in a log file, or in your terminal
or browser window, and it could consist of several chunks of stack traces.

The following example describes a stack trace that was generated by a server ORB
running in the WebSphere Application Server:

58 WebSphere Real Time V2 for Linux: User Guide

In the example, the ORB mapped a Java exception to a CORBA exception. This
exception is sent back to the client later as part of a reply message. The client ORB
reads this exception from the reply. It maps it to a Java exception
(java.rmi.RemoteException according to the CORBA specification) and throws this
new exception back to the client application.

Along this chain of events, often the original exception becomes hidden or lost, as
does its stack trace. On early versions of the ORB (for example, 1.2.x, 1.3.0) the
only way to get the original exception stack trace was to set some ORB debugging
properties. Newer versions have built-in mechanisms by which all the nested stack
traces are either recorded or copied around in a message string. When dealing with
an old ORB release (1.3.0 and earlier), it is a good idea to test the problem on
newer versions. Either the problem is not reproducible (known bug already solved)
or the debugging information that you obtain is much more useful.

Description string
The example stack trace shows that the application has caught a CORBA
org.omg.CORBA.MARSHAL system exception. After the MARSHAL exception,
some extra information is provided in the form of a string. This string should
specify minor code, completion status, and other information that is related to the
problem. Because CORBA system exceptions are alarm bells for an unusual
condition, they also hide inside what the real exception was.

Usually, the type of the exception is written in the message string of the CORBA
exception. The trace shows that the application was reading a value (read_value())
when an IllegalAccessException occurred that was associated to class
com.ibm.ws.pmi.server.DataDescriptor. This information is an indication of the real
problem and should be investigated first.

Interpreting ORB traces
The ORB trace file contains messages, trace points, and wire tracing. This section
describes the various types of trace.

Message trace
An example of a message trace.

Here is a simple example of a message:
19:12:36.306 com.ibm.rmi.util.Version logVersions:110 P=754534:O=0:CT
ORBRas[default] IBM Java ORB build orbdev-20050927

This message records the time, the package, and the method name that was called.
In this case, logVersions() prints out, to the log file, the version of the running
ORB.

org.omg.CORBA.MARSHAL: com.ibm.ws.pmi.server.DataDescriptor; IllegalAccessException minor code: 4942F23E completed: No
at com.ibm.rmi.io.ValueHandlerImpl.readValue(ValueHandlerImpl.java:199)
at com.ibm.rmi.iiop.CDRInputStream.read_value(CDRInputStream.java:1429)
at com.ibm.rmi.io.ValueHandlerImpl.read_Array(ValueHandlerImpl.java:625)
at com.ibm.rmi.io.ValueHandlerImpl.readValueInternal(ValueHandlerImpl.java:273)
at com.ibm.rmi.io.ValueHandlerImpl.readValue(ValueHandlerImpl.java:189)
at com.ibm.rmi.iiop.CDRInputStream.read_value(CDRInputStream.java:1429)
at com.ibm.ejs.sm.beans._EJSRemoteStatelessPmiService_Tie._invoke(_EJSRemoteStatelessPmiService_Tie.java:613)
at com.ibm.CORBA.iiop.ExtendedServerDelegate.dispatch(ExtendedServerDelegate.java:515)
at com.ibm.CORBA.iiop.ORB.process(ORB.java:2377)
at com.ibm.CORBA.iiop.OrbWorker.run(OrbWorker.java:186)
at com.ibm.ejs.oa.pool.ThreadPool$PooledWorker.run(ThreadPool.java:104)
at com.ibm.ws.util.CachedThread.run(ThreadPool.java:137)

Chapter 7. Problem determination 59

After the first colon in the example message, the line number in the source code
where that method invocation is done is written (110 in this case). Next follows the
letter P that is associated with the process number that was running at that
moment. This number is related (by a hash) to the time at which the ORB class
was loaded in that process. It is unlikely that two different processes load their
ORBs at the same time.

The following O=0 (alphabetic O = numeric 0) indicates that the current instance of
the ORB is the first one (number 0). CT specifies that this is the main (control)
thread. Other values are: LT for listener thread, RT for reader thread, and WT for
worker thread.

The ORBRas field shows which RAS implementation the ORB is running. It is
possible that when the ORB runs inside another application (such as a WebSphere
application), the ORB RAS default code is replaced by an external implementation.

The remaining information is specific to the method that has been logged while
executing. In this case, the method is a utility method that logs the version of the
ORB.

This example of a possible message shows the logging of entry or exit point of
methods, such as:

14:54:14.848 com.ibm.rmi.iiop.Connection <init>:504 LT=0:P=650241:O=0:port=1360 ORBRas[default] Entry
.....
14:54:14.857 com.ibm.rmi.iiop.Connection <init>:539 LT=0:P=650241:O=0:port=1360 ORBRas[default] Exit

In this case, the constructor (that is, <init>) of the class Connection is called. The
tracing records when it started and when it finished. For operations that include
the java.net package, the ORBRas logger prints also the number of the local port
that was involved.

Comm traces
An example of comm (wire) tracing.

Here is an example of comm tracing:
// Summary of the message containing name-value pairs for the principal fields

OUT GOING:
Request Message // It is an out going request, therefore we are dealing with a client
Date: 31 January 2003 16:17:34 GMT
Thread Info: P=852270:O=0:CT
Local Port: 4899 (0x1323)
Local IP: 9.20.178.136
Remote Port: 4893 (0x131D)
Remote IP: 9.20.178.136
GIOP Version: 1.2
Byte order: big endian

Fragment to follow: No // This is the last fragment of the request
Message size: 276 (0x114)
--

Request ID: 5 // Request Ids are in ascending sequence
Response Flag: WITH_TARGET // it means we are expecting a reply to this request
Target Address: 0
Object Key: length = 26 (0x1A) // the object key is created by the server when exporting

// the servant and retrieved in the IOR using a naming service
4C4D4249 00000010 14F94CA4 00100000
00080000 00000000 0000

Operation: message // That is the name of the method that the client invokes on the servant
Service Context: length = 3 (0x3) // There are three service contexts

60 WebSphere Real Time V2 for Linux: User Guide

Context ID: 1229081874 (0x49424D12) // Partner version service context. IBM only
Context data: length = 8 (0x8)

00000000 14000005

Context ID: 1 (0x1) // Codeset CORBA service context
Context data: length = 12 (0xC)

00000000 00010001 00010100

Context ID: 6 (0x6) // Codebase CORBA service context
Context data: length = 168 (0xA8)

00000000 00000028 49444C3A 6F6D672E
6F72672F 53656E64 696E6743 6F6E7465
78742F43 6F646542 6173653A 312E3000
00000001 00000000 0000006C 00010200
0000000D 392E3230 2E313738 2E313336
00001324 0000001A 4C4D4249 00000010
15074A96 00100000 00080000 00000000
00000000 00000002 00000001 00000018
00000000 00010001 00000001 00010020
00010100 00000000 49424D0A 00000008
00000000 14000005

Data Offset: 11c
// raw data that goes in the wire in numbered rows of 16 bytes and the corresponding ASCII
decoding
0000: 47494F50 01020000 00000114 00000005 GIOP............
0010: 03000000 00000000 0000001A 4C4D4249LMBI
0020: 00000010 14F94CA4 00100000 00080000L.........
0030: 00000000 00000000 00000008 6D657373mess
0040: 61676500 00000003 49424D12 00000008 age.....IBM.....
0050: 00000000 14000005 00000001 0000000C
0060: 00000000 00010001 00010100 00000006
0070: 000000A8 00000000 00000028 49444C3A(IDL:
0080: 6F6D672E 6F72672F 53656E64 696E6743 omg.org/SendingC
0090: 6F6E7465 78742F43 6F646542 6173653A ontext/CodeBase:
00A0: 312E3000 00000001 00000000 0000006C 1.0............l
00B0: 00010200 0000000D 392E3230 2E3137389.20.178
00C0: 2E313336 00001324 0000001A 4C4D4249 .136...$....LMBI
00D0: 00000010 15074A96 00100000 00080000J.........
00E0: 00000000 00000000 00000002 00000001
00F0: 00000018 00000000 00010001 00000001
0100: 00010020 00010100 00000000 49424D0AIBM.
0110: 00000008 00000000 14000005 00000000

Note: The italic comments that start with a double slash have been added for
clarity; they are not part of the traces.

In this example trace, you can see a summary of the principal fields that are
contained in the message, followed by the message itself as it goes in the wire. In
the summary are several field name-value pairs. Each number is in hexadecimal
notation.

For details of the structure of a GIOP message, see the CORBA specification,
chapters 13 and 15: http://www.omg.org/cgi-bin/doc?formal/99-10-07.

Client or server
From the first line of the summary of the message, you can identify whether the
host to which this trace belongs is acting as a server or as a client. OUT GOING
means that the message has been generated on the workstation where the trace
was taken and is sent to the wire.

In a distributed-object application, a server is defined as the provider of the
implementation of the remote object to which the client connects. In this work,

Chapter 7. Problem determination 61

http://www.omg.org/cgi-bin/doc?formal/99-10-07

however, the convention is that a client sends a request while the server sends
back a reply. In this way, the same ORB can be client and server in different
moments of the rmi-iiop session.

The trace shows that the message is an outgoing request. Therefore, this trace is a
client trace, or at least part of the trace where the application acts as a client.

Time information and host names are reported in the header of the message.

The Request ID and the Operation (“message” in this case) fields can be very
helpful when multiple threads and clients destroy the logical sequence of the
traces.

The GIOP version field can be checked if different ORBs are deployed. If two
different ORBs support different versions of GIOP, the ORB that is using the more
recent version of GIOP should fall back to a common level. By checking that field,
however, you can easily check whether the two ORBs speak the same language.

Service contexts
The header also records three service contexts, each consisting of a context ID and
context data.

A service context is extra information that is attached to the message for purposes
that can be vendor-specific such as the IBM Partner version.

Usually, a security implementation makes extensive use of these service contexts.
Information about an access list, an authorization, encrypted IDs, and passwords
could travel with the request inside a service context.

Some CORBA-defined service contexts are available. One of these is the Codeset.

In the example, the codeset context has ID 1 and data 00000000 00010001
00010100. Bytes 5 through 8 specify that characters that are used in the message are
encoded in ASCII (00010001 is the code for ASCII). Bytes 9 through 12 instead are
related to wide characters.

The default codeset is UTF8 as defined in the CORBA specification, although
almost all Windows and UNIX® platforms typically communicate through ASCII.
i5/OS® and Mainframes such as zSeries® systems are based on the IBM EBCDIC
encoding.

The other CORBA service context, which is present in the example, is the Codebase
service context. It stores information about how to call back to the client to access
resources in the client such as stubs, and class implementations of parameter
objects that are serialized with the request.

Common problems
This section describes some of the problems that you might find.

ORB application hangs
One of the worst conditions is when the client, or server, or both, hang. If a hang
occurs, the most likely condition (and most difficult to solve) is a deadlock of
threads. In this condition, it is important to know whether the workstation on
which you are running has more than one CPU, and whether your CPU is using
Simultaneous Multithreading (SMT).

62 WebSphere Real Time V2 for Linux: User Guide

A simple test that you can do is to keep only one CPU running, disable SMT, and
see whether the problem disappears. If it does, you know that you must have a
synchronization problem in the application.

Also, you must understand what the application is doing while it hangs. Is it
waiting (low CPU usage), or it is looping forever (almost 100% CPU usage)? Most
of the cases are a waiting problem.

You can, however, still identify two cases:
v Typical deadlock
v Standby condition while the application waits for a resource to arrive

An example of a standby condition is where the client sends a request to the server
and stops while waiting for the reply. The default behavior of the ORB is to wait
indefinitely.

You can set a couple of properties to avoid this condition:
v com.ibm.CORBA.LocateRequestTimeout
v com.ibm.CORBA.RequestTimeout

When the property com.ibm.CORBA.enableLocateRequest is set to true (the default
is false), the ORB first sends a short message to the server to find the object that it
needs to access. This first contact is the Locate Request. You must now set the
LocateRequestTimeout to a value other than 0 (which is equivalent to infinity). A
good value could be something around 5000 ms.

Also, set the RequestTimeout to a value other than 0. Because a reply to a request
is often large, allow more time for the reply, such as 10,000 ms. These values are
suggestions and might be too low for slow connections. When a request runs out
of time, the client receives an explanatory CORBA exception.

When an application hangs, consider also another property that is called
com.ibm.CORBA.FragmentTimeout. This property was introduced in IBM ORB
1.3.1, when the concept of fragmentation was implemented to increase
performance. You can now split long messages into small chunks or fragments and
send one after the other over the net. The ORB waits for 30 seconds (default value)
for the next fragment before it throws an exception. If you set this property, you
disable this timeout, and problems of waiting threads might occur.

If the problem seems to be a deadlock or hang, capture the Javadump information.
After capturing the information, wait for a minute or so, and do it again. A
comparison of the two snapshots shows whether any threads have changed state.
For information about how to do this operation, see “Triggering a Javadump” on
page 86.

In general, stop the application, enable the orb traces and restart the application.
When the hang is reproduced, the partial traces that can be retrieved can be used
by the IBM ORB service team to help understand where the problem is.

Running the client without the server running before the client is
started
An example of the error messages that are generated from this process.

This operation outputs:

Chapter 7. Problem determination 63

(org.omg.CORBA.COMM_FAILURE)
Hello Client exception:

org.omg.CORBA.COMM_FAILURE:minor code:1 completed:No
at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:145)
at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:77)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:98)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:75)
at com.ibm.rmi.corba.ClientDelegate.createRequest(ClientDelegate.java:440)
at com.ibm.rmi.corba.ClientDelegate.is_a(ClientDelegate.java:571)
at org.omg.CORBA.portable.ObjectImpl._is_a(ObjectImpl.java:74)
at org.omg.CosNaming.NamingContextHelper.narrow(NamingContextHelper.java:58)
com.sun.jndi.cosnaming.CNCtx.callResolve(CNCtx.java:327)

Client and server are running, but not naming service
An example of the error messages that are generated from this process.

The output is:
Hello Client exception:Cannot connect to ORB
Javax.naming.CommunicationException:

Cannot connect to ORB.Root exception is org.omg.CORBA.COMM_FAILURE minor code:1 completed:No
at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:145)
at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:77)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:98)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:75)
at com.ibm.rmi.corba.ClientDelegate.createRequest(ClientDelegate.java:440)
at com.ibm.rmi.corba.InitialNamingClient.resolve(InitialNamingClient.java:197)
at com.ibm.rmi.corba.InitialNamingClient.cachedInitialReferences(InitialNamingClient.j
at com.ibm.rmi.corba.InitialNamingClient.resolve_initial_references(InitialNamingClien
at com.ibm.rmi.corba.ORB.resolve_initial_references(ORB.java:1269)
.........

You must start the Java IDL name server before an application or applet starts that
uses its naming service. Installation of the Java IDL product creates a script or
executable file that starts the Java IDL name server.

Start the name server so that it runs in the background. If you do not specify
otherwise, the name server listens on port 2809 for the bootstrap protocol that is
used to implement the ORB resolve_initial_references() and list_initial_references()
methods.

Specify a different port, for example, 1050, as follows:
tnameserv -ORBInitialPort 1050

Clients of the name server must be made aware of the new port number. Do this
by setting the org.omg.CORBA.ORBInitialPort property to the new port number
when you create the ORB object.

Running the client with MACHINE2 (client) unplugged from the
network
An example of the error messages that are generated when the client has been
unplugged form the network.

Your output is:
(org.omg.CORBA.TRANSIENT CONNECT_FAILURE)

Hello Client exception:Problem contacting address:corbaloc:iiop:machine2:2809/NameService
javax.naming.CommunicationException:Problem contacting address:corbaloc:iiop:machine2:2809/N

is org.omg.CORBA.TRANSIENT:CONNECT_FAILURE (1)minor code:4942F301 completed:No
at com.ibm.CORBA.transport.TransportConnectionBase.connect(TransportConnectionBase.jav
at com.ibm.rmi.transport.TCPTransport.getConnection(TCPTransport.java:178)
at com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)

64 WebSphere Real Time V2 for Linux: User Guide

at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:131)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:98)
at com.ibm.CORBA.iiop.ClientDelegate._createRequest(ClientDelegate.java:2096)
at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1264)
at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1177)
at com.ibm.rmi.corba.InitialNamingClient.resolve(InitialNamingClient.java:252)
at com.ibm.rmi.corba.InitialNamingClient.cachedInitialReferences(InitialNamingClient.j
at com.ibm.rmi.corba.InitialNamingClient.resolve_initial_references(InitialNamingClien
at com.ibm.rmi.corba.InitialReferenceClient.resolve_initial_references(InitialReferenc
at com.ibm.rmi.corba.ORB.resolve_initial_references(ORB.java:3211)
at com.ibm.rmi.iiop.ORB.resolve_initial_references(ORB.java:523)
at com.ibm.CORBA.iiop.ORB.resolve_initial_references(ORB.java:2898)
..........

IBM ORB service: collecting data
This section describes how to collect data about ORB problems.

If after all these verifications, the problem is still present, collect at all nodes of the
problem the following:
v Operating system name and version.
v Output of java -Xgcpolicy:metronome -version

v Output of java com.ibm.CORBA.iiop.Version.
v Output of rmic -iiop -version, if rmic is involved.
v ASV build number (WebSphere Application Server only).
v If you think that the problem is a regression, include the version information for

the most recent known working build and for the failing build.
v If this is a runtime problem, collect debug and communication traces of the

failure from each node in the system (as explained earlier in this section).
v If the problem is in rmic -iiop or rmic -idl, set the options:

-J-Djavac.dump.stack=1 -Xtrace, and capture the output.
v Typically this step is not necessary. If it looks like the problem is in the buffer

fragmentation code, IBM service will return the defect asking for an additional
set of traces, which you can produce by executing with
-Dcom.ibm.CORBA.FragmentSize=0.

A testcase is not essential, initially. However, a working testcase that demonstrates
the problem by using only the Java SDK classes will speed up the resolution time
for the problem.

Preliminary tests
The ORB is affected by problems with the underlying network, hardware, and
JVM.

When a problem occurs, the ORB can throw an org.omg.CORBA.* exception, some
text that describes the reason, a minor code, and a completion status. Before you
assume that the ORB is the cause of problem, ensure the following:
v The scenario can be reproduced in a similar configuration.
v The JIT is disabled (see “JIT and AOT problem determination” on page 150).
v No AOT compiled code is being used

Also:
v Disable additional CPUs.
v Disable Simultaneous Multithreading (SMT) where possible.

Chapter 7. Problem determination 65

v Eliminate memory dependencies with the client or server. The lack of physical
memory can be the cause of slow performance, apparent hangs, or crashes. To
remove these problems, ensure that you have a reasonable headroom of memory.

v Check physical network problems (firewalls, comm links, routers, DNS name
servers, and so on). These are the major causes of CORBA COMM_FAILURE
exceptions. As a test, ping your own workstation name.

v If the application is using a database such as DB2, switch to the most reliable
driver. For example, to isolate DB2 AppDriver, switch to Net Driver, which is
slower and uses sockets, but is more reliable.

NLS problem determination
The JVM contains built-in support for different locales. This section provides an
overview of locales, with the main focus on fonts and font management.

Overview of fonts
When you want to display text, either in SDK components (AWT or Swing), on the
console or in any application, characters have to be mapped to glyphs.

A glyph is an artistic representation of the character, in some typographical style,
and is stored in the form of outlines or bitmaps. Glyphs might not correspond
one-for-one with characters. For instance, an entire character sequence can be
represented as a single glyph. Also, a single character can be represented by more
than one glyph (for example, in Indic scripts).

A font is a set of glyphs, where each glyph is encoded in a particular encoding
format, so that the character to glyph mapping can be done using the encoded
value. Almost all of the available Java fonts are encoded in Unicode and provide
universal mappings for all applications.

The most commonly available font types are TrueType and OpenType fonts.

Font specification properties

Specify fonts according to the following characteristics:

Font family
Font family is a group of several individual fonts that are related in
appearance. For example: Times, Arial, and Helvetica.

Font style
Font style specifies that the font be displayed in various faces. For example:
Normal, Italic, and Oblique

Font variant
Font variant determines whether the font should be displayed in normal caps
or in small caps. A particular font might contain only normal caps, only small
caps, or both types of glyph.

Font weight
Font weight refers to the boldness or the lightness of the glyph to be used.

Font size
Font size is used to modify the size of the displayed text.

66 WebSphere Real Time V2 for Linux: User Guide

Fonts installed in the system

On Linux platforms
To see the fonts that are either installed in the system or available for an
application to use, type the command: xset -q "". If your PATH also points
to the SDK (as it should be), xset -q output also shows the fonts that are
bundled with the Developer Kit.

Use xset +fp to add the font path and xset -fp to remove the font path.

Font utilities
A list of font utilities that are supported.

Font utilities on Linux

xlsfonts
Use xlsfonts to check whether a particular font is installed on the system. For
example: xlsfonts | grep ksc will list all the Korean fonts in the system.

iconv
Use to convert the character encoding from one encoding to other. Converted
text is written to standard output. For example: iconv -f oldset -t newset
[file ...]

Options are:

-f oldset
Specifies the source codeset (encoding).

-t newset
Specifies the destination codeset (encoding).

file
The file that contain the characters to be converted; if no file is specified,
standard input is used.

Common NLS problem and possible causes
A common NLS problem with potential solutions.

Why do I see a square box or ??? (question marks) in the SDK components?
This effect is caused mainly because Java is not able to find the correct font file
to display the character. If a Korean character should be displayed, the system
should be using the Korean locale, so that Java can take the correct font file. If
you are seeing boxes or queries, check the following:

For AWT components:
1. Check your locale with locale.
2. To change the locale, export LANG=zh_TW (for example)
3. If this still does not work, try to log in with the required language.

For Swing components:
1. Check your locale with locale

2. To change the locale, export LANG=zh_TW (for example)
3. If you know which font you have used in your application, such as serif,

try to get the corresponding physical font by looking in the fontpath. If the
font file is missing, try adding it there.

Chapter 7. Problem determination 67

Attach API problem determination
This section helps you solve problems involving the Attach API.

The IBM Java Attach API uses shared semaphores, sockets, and file system artifacts
to implement the attach protocol. Problems with these artifacts might adversely
affect the operation of applications when they use the attach API.

Note: Error messages from agents on the target VM go to stderr or stdout for the
target VM. They are not reported in the messages output by the attaching VM.

Deleting files in /tmp

The attach API depends on the contents of a common directory. By default the
common directory is /tmp/.com_ibm_tools_attach. Problems are caused if you
modify the common directory in one of the following ways:
v Deleting the common directory.
v Deleting the contents of the common directory.
v Changing the permissions of the common directory or any of its content.

If you do modify the common directory, possible effects include:
v Semaphore “leaks” might occur, where excessive numbers of unused shared

semaphores are opened. You can remove the semaphores using the command:
ipcrm -s <semid>

Use the command to delete semaphores that have keys starting with “0xa1”.
v The Java VMs might not be able to list existing target VMs.
v The Java VMs might not be able to attach to existing target VMs.
v The Java VM might not be able to enable its attach API.

If the common directory cannot be used, a Java VM attempts to recreate the
common directory. However, the JVM cannot recreate the files related to currently
executing VMs.

The VirtualMachine.attach(String id) method reports
AttachNotSupportedException: No provider for virtual machine id

There are several possible reasons for this message:
v The target VM might be owned by another userid. The attach API can only

connect a VM to a target VM with the same userid.
v The attach API for the target VM might not have launched yet. There is a short

delay from when the Java VM launches to when the attach API is functional.
v The attach API for the target VM might have failed. Verify that the directory

/tmp/.com_ibm_tools_attach/<id> exists, and that the directory is readable and
writable by the userid.

v The target directory /tmp/.com_ibm_tools_attach/<id> might have been deleted.
v The attach API might not have been able to open the shared semaphore. To

verify that there is at least one shared semaphore, use the command:
ipcs -s

If there is a shared semaphore, at least one key starting with “0xa1” appears in
the output from the ipcs command.

68 WebSphere Real Time V2 for Linux: User Guide

Note: The number of available semaphores is limited on systems which use
System V IPC, including Linux, z/OS®, and AIX.

The VirtualMachine.attach() method reports
AttachNotSupportedException

There are several possible reasons for this message:
v The target process is dead or suspended.
v The target process, or the hosting system is heavily loaded. The result is a delay

in responding to the attach request.
v The network protocol has imposed a wait time on the port used to attach to the

target. The wait time might occur after heavy use of the attach API, or other
protocols which use sockets. To check if any ports are in the TIME_WAIT state,
use the command:
netstat -a

The VirtualMachine.loadAgent(),
VirtualMachine.loadAgentLibrary(),, or
VirtualMachine.loadAgentPath() methods report
com.sun.tools.attach.AgentLoadException or
com.sun.tools.attach.AgentInitializationException

There are several possible reasons for this message:
v The JVMTI agent or the agent JAR file might be corrupted. Try loading the agent

at startup time using the -javaagent, -agentlib, or -agentpath option, depending
on which method reported the problem.

v The agent might be attempting an operation which is not available after VM
startup.

A process running as root can see a target using
AttachProvider.listVirtualMachines(), but attempting to attach
results in an AttachNotSupportedException

A process can attach only to processes owned by the same user. To attach to a
non-root process from a root process, first use the su command to change the
effective UID of the attaching process to the UID of the target UID, before
attempting to attach.

Chapter 7. Problem determination 69

70 WebSphere Real Time V2 for Linux: User Guide

Chapter 8. Using diagnostic tools

Diagnostics tools are available to help you solve your problems.

Note: JVMPI is now a deprecated interface, replaced by JVMTI.

Using dump agents
Dump agents are set up during JVM initialization. They enable you to use events
occurring in the JVM, such as Garbage Collection, thread start, or JVM termination,
to initiate dumps or to start an external tool.

The default dump agents are sufficient for most cases. Use the -Xdump option to
add and remove dump agents for various JVM events, update default dump
settings (such as the dump name), and limit the number of dumps that are
produced.

Using the -Xdump option
The -Xdump option controls the way you use dump agents and dumps.

The -Xdump option allows you to:
v Add and remove dump agents for various JVM events.
v Update default dump agent settings.
v Limit the number of dumps produced.
v Show dump agent help.

You can have multiple -Xdump options on the command line and also multiple
dump types triggered by multiple events. For example:
java -Xgcpolicy:metronome -Xdump:heap:none -Xdump:heap+java:events=vmstart+vmstop <class> [args...]

turns off all Heapdumps and create a dump agent that produces a Heapdump and
a Javadump when either a vmstart or vmstop event occurs.

You can use the -Xdump:what option to list the registered dump agents. The
registered dump agents listed might be different to those specified because the
JVM ensures that multiple -Xdump options are merged into a minimum set of
dump agents.

The events keyword is used as the prime trigger mechanism. However, you can
use additional keywords to further control the dump produced.

The syntax of the -Xdump option is as follows:

-Xdump command-line option syntax

© Copyright IBM Corp. 2003, 2010 71

�� -Xdump:

�

� �

help
none
events
request
tokens
dynamic
what

+

<agent>
: help

none
defaults

,
+

events= <event>
exec=<command>
file=<filename>
filter=<filter>
opts=<options>
priority=<0-999>
range=<ranges>
request=<requests>

��

Users of UNIX style shells must be aware that unwanted shell expansion might
occur because of the characters used in the dump agent options. To avoid
unpredictable results, enclose this command line option in quotation marks. For
example:
java -Xgcpolicy:metronome "-Xdump:java:events=throw,filter=*Memory*" <Class>

For more information, see the manual for your shell.

Help options

These options display usage and configuration information for dumps, as shown in
the following table:

Command Result

-Xdump:help Display general dump help

-Xdump:events List available trigger events

-Xdump:request List additional VM requests

-Xdump:tokens List recognized label tokens

-Xdump:what Show registered agents on startup

-Xdump:<agent>:help Display detailed dump agent help

-Xdump:<agent>:defaults Display default settings for this agent

Merging -Xdump agents
-Xdump agents are always merged internally by the JVM, as long as none of the
agent settings conflict with each other.

If you configure more than one dump agent, each responds to events according to
its configuration. However, the internal structures representing the dump agent
configuration might not match the command line, because dump agents are

72 WebSphere Real Time V2 for Linux: User Guide

merged for efficiency. Two sets of options can be merged as long as none of the
agent settings conflict. This means that the list of installed dump agents and their
parameters produced by -Xdump:what might not be grouped in the same way as
the original -Xdump options that configured them.

For example, you can use the following command to specify that a dump agent
collects a javadump on class unload:
java -Xdump:java:events=unload -Xdump:what

This command does not create a new agent, as can be seen in the results from the
-Xdump:what option.
...

-Xdump:java:

events=gpf+user+abort+unload,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=10,
request=exclusive

The configuration is merged with the existing javadump agent for events gpf, user,
and abort, because none of the specified options for the new unload agent conflict
with those for the existing agent.

In the above example, if one of the parameters for the unload agent is changed so
that it conflicts with the existing agent, then it cannot be merged. For example, the
following command specifies a different priority, forcing a separate agent to be
created:
java -Xdump:java:events=unload,priority=100 -Xdump:what

The results of the -Xdump:what option in the command are as follows.
...

-Xdump:java:

events=unload,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=100,
request=exclusive

-Xdump:java:

events=gpf+user+abort,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=10,
request=exclusive

To merge dump agents, the request, filter, opts, label, and range parameters must
match exactly. If you specify multiple agents that filter on the same string, but
keep all other parameters the same, the agents are merged. For example:
java -Xdump:none -Xdump:java:events=uncaught,filter=java/lang/NullPointerException \\
-Xdump:java:events=unload,filter=java/lang/NullPointerException -Xdump:what

The results of this command are as follows.
Registered dump agents

-Xdump:java:

Chapter 8. Using diagnostic tools 73

events=unload+uncaught,
filter=java/lang/NullPointerException,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=10,
request=exclusive

Dump agents
A dump agent performs diagnostic tasks when triggered. Most dump agents save
information on the state of the JVM for later analysis. The “tool” agent can be used
to trigger interactive diagnostics.

The following table shows the dump agents:

Dump agent Description

console Basic thread dump to stderr.

system Capture raw process image. See “Using system
dumps and the dump viewer” on page 102.

tool Run command-line program.

java Write application summary. See “Using Javadump”
on page 85.

heap Capture heap graph. See “Using Heapdump” on
page 98.

snap Take a snap of the trace buffers.

Console dumps
Console dumps are very basic dumps, in which the status of every Java thread is
written to stderr.

In this example, the range=1..1 suboption is used to control the amount of output
to just one thread start (in this case, the start of the Signal Dispatcher thread).
java -Xdump:console:events=thrstart,range=1..1 -Xgcpolicy:metronome -version

JVMDUMP006I Processing Dump Event "thrstart", detail "" - Please Wait.
-------- Console dump --------
Stack Traces of Threads:

ThreadName=Signal Dispatcher(30118C60)
Status=Running

ThreadName=main(301181B0)
Status=Waiting
Monitor=30298BD0 (Thread public flags mutex)
Count=0
Owner=(314F1900)
In com/ibm/oti/vm/BootstrapClassLoader.loadClass(Ljava/lang/String;)Ljava/lang/Class;
In sun/reflect/ReflectionFactory.checkInitted()V
In sun/reflect/ReflectionFactory.newMethodAccessor(Ljava/lang/reflect/Method;)Lsun/reflect/MethodAccessor;
In java/lang/reflect/Method.acquireMethodAccessor()V
In java/lang/reflect/Method.invoke(Ljava/lang/Object;[Ljava/lang/Object;)Ljava/lang/Object;
In com/ibm/misc/SystemIntialization.lastChanceHook()V
In java/lang/System.completeInitialization()V
In java/lang/Thread.<init>(Ljava/lang/String;Ljava/lang/Object;IZ)V^^^^^^^^ Console dump ^^^^^^^^
JVMDUMP013I Processed Dump Event "thrstart", detail "".

74 WebSphere Real Time V2 for Linux: User Guide

Two threads are displayed in the dump because the main thread does not generate
a thrstart event.

System dumps
System dumps involve dumping the address space and as such are generally very
large.

The bigger the footprint of an application the bigger its dump. A dump of a major
server-based application might take up many gigabytes of file space and take
several minutes to complete. In this example, the file name is overridden from the
default.
java -Xgcpolicy:metronome -Xdump:system:events=vmstop,file=my.dmp

::::::::: removed usage info :::::::::

JVMDUMP006I Processing Dump Event "vmstop", detail "#00000000" - Please Wait.
JVMDUMP007I JVM Requesting System Dump using '/home/user/my.dmp'
JVMDUMP010I System Dump written to /home/user/my.dmp
JVMDUMP013I Processed Dump Event "vmstop", detail "#00000000".

See “Using system dumps and the dump viewer” on page 102 for more
information about analyzing a system dump.
Related information

“Using system dumps and the dump viewer” on page 102
The JVM can generate native system dumps, also known as core dumps, under
configurable conditions. System dumps are typically quite large. Use the gdb tool
to analyze a system dump on Linux.

Tool option
The tool option allows external processes to be started when an event occurs.

The following example displays a simple message when the JVM stops. The %pid
token is used to pass the pid of the process to the command. The list of available
tokens can be printed with -Xdump:tokens, or found in “Dump agent tokens” on
page 81. If you do not specify a tool to use, a platform specific debugger is started.
java -Xgcpolicy:metronome -Xdump:tool:events=vmstop,exec="echo process %pid has finished" -version

VMDUMP006I Processing dump event "vmstop", detail "#00000000" - please wait.
JVMDUMP007I JVM Requesting Tool dump using 'echo process 254050 has finished'
JVMDUMP011I Tool dump spawned process 344292
process 254050 has finished
JVMDUMP013I Processed dump event "vmstop", detail "#00000000".

By default, the range option is set to 1..1. If you do not specify a range option for
the dump agent the tool will be started once only. To start the tool every time the
event occurs, set the range option to 1..0. See “range option” on page 80 for more
information.

Javadumps
Javadumps are an internally generated and formatted analysis of the JVM, giving
information that includes the Java threads present, the classes loaded, and heap
statistics.

An example of producing a Javadump when a class is loaded is shown below.
java -Xgcpolicy:metronome -Xdump:java:events=load,filter=java/lang/String -version

JVMDUMP006I Processing dump event "load", detail "java/lang/String" - please wait.

Chapter 8. Using diagnostic tools 75

JVMDUMP007I JVM Requesting Java dump using '/home/user/javacore.20090602.094449.274632.0001.txt'
JVMDUMP010I Java dump written to /home/user/javacore.20090602.094449.274632.0001.txt
JVMDUMP013I Processed dump event "load", detail "java/lang/String".

See “Using Javadump” on page 85 for more information about analyzing a
Javadump.
Related information

“Using Javadump” on page 85
Javadump produces files that contain diagnostic information related to the JVM
and a Java application captured at a point during execution. For example, the
information can be about the operating system, the application environment,
threads, stacks, locks, and memory.

Heapdumps
Heapdumps produce phd format files by default.

“Using Heapdump” on page 98 provides more information about Heapdumps. The
following example shows the production of a Heapdump. In this case, both a phd
and a classic (.txt) Heapdump have been requested by the use of the opts= option.
java -Xgcpolicy:metronome -Xdump:heap:events=vmstop,opts=PHD+CLASSIC -version

JVMDUMP006I Processing dump event "vmstop", detail "#00000000" - please wait.
JVMDUMP007I JVM Requesting Heap dump using '/home/user/heapdump.20090602.095239.164050.0001.phd'
JVMDUMP010I Heap dump written to /home/user/heapdump.20090602.095239.164050.0001.phd
JVMDUMP007I JVM Requesting Heap dump using '/home/user/heapdump.20090602.095239.164050.0001.txt'
JVMDUMP010I Heap dump written to /home/user/heapdump.20090602.095239.164050.0001.txt
JVMDUMP013I Processed dump event "vmstop", detail "#00000000".

See “Using Heapdump” on page 98 for more information about analyzing a
Heapdump.
Related information

“Using Heapdump” on page 98
The term Heapdump describes the IBM Virtual Machine for Java mechanism that
generates a dump of all the live objects that are on the Java heap; that is, those that
are being used by the running Java application.

Snap traces
Snap traces are controlled by -Xdump. They contain the tracepoint data held in the
trace buffers.

The example below shows the production of a snap trace.
java -Xgcpolicy:metronome -Xdump:snap:events=vmstop -version

JVMDUMP006I Processing dump event "vmstop", detail "#00000000" - please wait.
JVMDUMP007I JVM Requesting Snap dump using '/home/user/Snap.20090603.063646.315586.0001.trc'
JVMDUMP010I Snap dump written to /home/user/Snap.20090603.063646.315586.0001.trc
JVMDUMP013I Processed dump event "vmstop", detail "#00000000".

Snap traces require the use of the trace formatter for further analysis.

See “Using the trace formatter” on page 139 for more information about analyzing
a snap trace.

Dump events
Dump agents are triggered by events occurring during JVM operation.

76 WebSphere Real Time V2 for Linux: User Guide

Some events can be filtered to improve the relevance of the output. See “filter
option” on page 78 for more information.

Note: The unload and expand events currently do not occur in WebSphere Real
Time. Classes are in immortal memory and cannot be unloaded.

Note: The gpf and abort events cannot trigger a heap dump, prepare the heap
(request=prepwalk), or compact the heap (request=compact).

The table below shows events available as dump agent triggers:

Event Triggered when... Filter operation

gpf A General Protection Fault (GPF) occurs.

user The JVM receives the SIGQUIT (Linux) signal from
the operating system.

abort The JVM receives the SIGABRT signal from the
operating system.

vmstart The virtual machine is started.

vmstop The virtual machine stops. Filters on exit code; for example,
filter=#129..#192#-42#255

load A class is loaded. Filters on class name; for example,
filter=java/lang/String

unload A class is unloaded.

throw An exception is thrown. Filters on exception class name; for example,
filter=java/lang/OutOfMem*

catch An exception is caught. Filters on exception class name; for example,
filter=*Memory*

uncaught A Java exception is not caught by the application. Filters on exception class name; for example,
filter=*MemoryError

systhrow A Java exception is about to be thrown by the JVM.
This is different from the 'throw' event because it is
only triggered for error conditions detected internally
in the JVM.

Filters on exception class name; for example,
filter=java/lang/OutOfMem*

thrstart A new thread is started.

blocked A thread becomes blocked.

thrstop A thread stops.

fullgc A garbage collection cycle is started.

slow A thread takes longer than 5ms to respond to an
internal JVM request.

Changes the time taken for an event to be
considered slow; for example, filter=#300ms
will trigger when a thread takes longer than
300ms to respond to an internal JVM request.

Advanced control of dump agents
Options are available to give you more control over dump agent behavior.

exec option
The exec option is used by the tool dump agent to specify an external application
to start.

See “Tool option” on page 75 for an example and usage information.

Chapter 8. Using diagnostic tools 77

file option
The file option is used by dump agents that write to a file.

It specifies where the diagnostics information should be written. For example:
java -Xgcpolicy:metronome -Xdump:heap:events=vmstop,file=my.dmp

You can use tokens to add context to dump file names. See “Dump agent tokens”
on page 81 for more information.

The location for the dump is selected from these options, in this order:
1. The location specified on the command line.
2. The location specified by the relevant environment variable.
v IBM_JAVACOREDIR for Javadump.
v IBM_HEAPDUMPDIR for Heapdump.
v IBM_COREDIR for system dump, .
v IBM_COREDIR for snap traces, .

3. The current working directory of the JVM process.

If the directory does not exist, it will be created.

If the dump cannot be written to the selected location, the JVM will fall-back to the
following locations, in this order:
1. The location specified by the TMPDIR environment variable.
2. The /tmp directory.

filter option
Some JVM events occur thousands of times during the lifetime of an application.
Dump agents can use filters and ranges to avoid excessive dumps being produced.

Wildcards

You can use a wildcard in your exception event filter by placing an asterisk only at
the beginning or end of the filter. The following command does not work because
the second asterisk is not at the end:
-Xdump:java:events=vmstop,filter=*InvalidArgumentException#*.myVirtualMethod

In order to make this filter work, it must be changed to:
-Xdump:java:events=vmstop,filter=*InvalidArgumentException#MyApplication.*

Class loading and exception events

You can filter class loading (load) and exception (throw, catch, uncaught, systhrow)
events by Java class name:
-Xdump:java:events=throw,filter=java/lang/OutOfMem*
-Xdump:java:events=throw,filter=*MemoryError
-Xdump:java:events=throw,filter=*Memory*

From Java 6 SR 3, you can filter throw, uncaught, and systhrow exception events
by Java method name:
-Xdump:java:events=throw,filter=ExceptionClassName[#ThrowingClassName.throwingMethodName[#stackFrameOffset]]

Optional portions are shown in square brackets.

78 WebSphere Real Time V2 for Linux: User Guide

From Java 6 SR 3, you can filter the catch exception events by Java method name:
-Xdump:java:events=catch,filter=ExceptionClassName[#CatchingClassName.catchingMethodName]

Optional portions are shown in square brackets.

vmstop event

You can filter the JVM shut down event by using one or more exit codes:
-Xdump:java:events=vmstop,filter=#129..192#-42#255

slow event

You can filter the slow event to change the time threshold from the default of 5
ms:
-Xdump:java:events=slow,filter=#300ms

You cannot set the filter to a time lower than the default time.

allocation event

You must filter the allocation event to specify the size of objects that cause a
trigger. You can set the filter size from zero up to the maximum value of a 32 bit
pointer on 32 bit platforms, or the maximum value of a 64 bit pointer on 64 bit
platforms. Setting the lower filter value to zero triggers a dump on all allocations.

For example, to trigger dumps on allocations greater than 5 Mb in size, use:
-Xdump:stack:events=allocation,filter=#5m

To trigger dumps on allocations between 256Kb and 512Kb in size, use:
-Xdump:stack:events=allocation,filter=#256k..512k

The allocation event is available from Java 6 SR 5 onwards.

Other events

If you apply a filter to an event that does not support filtering, the filter is ignored.

opts option
The Heapdump agent uses this option to specify the type of file to produce.

Heapdumps and the opts option

You can specify a PHD Heapdump, a classic text Heapdump, or both. For example:

–Xdump:heap:opts=PHD (default)
–Xdump:heap:opts=CLASSIC
–Xdump:heap:opts=PHD+CLASSIC

See “Enabling text formatted ("classic") Heapdumps” on page 98 for more
information.

The ceedump agent is the preferred way to specify LE dumps, for example:
-Xdump:ceedump:events=gpf

Chapter 8. Using diagnostic tools 79

Priority option
One event can generate multiple dumps. The agents that produce each dump run
sequentially and their order is determined by the priority keyword set for each
agent.

Examination of the output from -Xdump:what shows that a gpf event produces a
snap trace, a Javadump, and a system dump. In this example, the system dump
will run first (priority 999), the snap dump second (priority 500), and the
Javadump last (priority 10):

–Xdump:heap:events=vmstop,priority=123

The maximum value allowed for priority is 999. Higher priority dump agents will
be started first.

If you do not specifically set a priority, default values are taken based on the dump
type. The default priority and the other default values for a particular type of
dump, can be displayed by using -Xdump:<type>:defaults. For example:
java -Xgcpolicy:metronome -Xdump:heap:defaults -version

Default -Xdump:heap settings:

events=gpf+user
filter=
file=/home/user/heapdump.%Y%m%d.%H%M%S.%pid.phd
range=1..0
priority=40
request=exclusive+prepwalk
opts=PHD

range option
You can start and stop dump agents on a particular occurrence of a JVM event by
using the range suboption.

For example:
-Xdump:java:events=fullgc,range=100..200

Note: range=1..0 against an event means "on every occurrence".

The JVM default dump agents have the range option set to 1..0 for all events
except systhrow. All systhrow events with filter=java/lang/OutOfMemoryError
have the range set to 1..4, which limits the number of dumps produced on
OutOfMemory conditions to a maximum of 4. For more information, see “Default
dump agents” on page 82

If you add a new dump agent and do not specify the range, a default of 1..0 is
used.

request option
Use the request option to ask the JVM to prepare the state before starting the
dump agent.

The available options are listed in the following table:

Option value Description

exclusive Request exclusive access to the JVM.

80 WebSphere Real Time V2 for Linux: User Guide

Option value Description

compact Run garbage collection. This option removes all unreachable objects from
the heap before the dump is generated.

prepwalk Prepare the heap for walking. You must also specify exclusive when using
this option.

serial Suspend other dumps until this one has completed.

In general, the default request options are sufficient.

You can specify more than one request option using +. For example:

-Xdump:heap:request=exclusive+compact+prepwalk

defaults option
Each dump type has default options. To view the default options for a particular
dump type, use -Xdump:<type>:defaults.

You can change the default options at runtime. For example, you can direct Java
dump files into a separate directory for each process, and guarantee unique files by
adding a sequence number to the file name using:

-Xdump:java:defaults:file=dumps/%pid/javacore-%seq.txt

This option does not add a Javadump agent; it updates the default settings for
Javadump agents. Further Javadump agents will then create dump files using this
specification for filenames, unless overridden.

Note: Changing the defaults for a dump type will also affect the default agents for
that dump type added by the JVM during initialization. For example if you change
the default file name for Javadumps, that will change the file name used by the
default Javadump agents. However, changing the default range option will not
change the range used by the default Javadump agents, because those agents
override the range option with specific values.

Dump agent tokens
Use tokens to add context to dump file names and to pass command-line
arguments to the tool agent.

The tokens available are listed in the following table:

Token Description

%Y Year (4 digits)

%y Year (2 digits)

%m Month (2 digits)

%d Day of the month (2 digits)

%H Hour (2 digits)

%M Minute (2 digits)

%S Second (2 digits)

%pid Process id

%uid User name

Chapter 8. Using diagnostic tools 81

Token Description

%seq Dump counter

%tick msec counter

%home Java home directory

%last Last dump

Default dump agents
The JVM adds a set of dump agents by default during its initialization. You can
override this set of dump agents using -Xdump on the command line.

See “Removing dump agents” on page 83. for more information.

Use the -Xdump:what option on the command line to show the registered dump
agents. The sample output shows the default dump agents that are in place:
java -Xgcpolicy:metronome -Xdump:what

Registered dump agents

-Xdump:system:

events=gpf+abort,
label=/home/user/core.%Y%m%d.%H%M%S.%pid.%seq.dmp,
range=1..0,
priority=999,
request=serial

-Xdump:snap:

events=gpf+abort,
label=/home/user/Snap%seq.%Y%m%d.%H%M%S.%pid.%seq.trc,
range=1..0,
priority=500,
request=serial

-Xdump:snap:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/Snap%seq.%Y%m%d.%H%M%S.%pid.%seq.trc,
range=1..4,
priority=500,
request=serial

-Xdump:heap:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/heapdump.%Y%m%d.%H%M%S.%pid.%seq.phd,
range=1..4,
priority=40,
request=exclusive+prepwalk+compact,
opts=PHD

-Xdump:java:

events=gpf+user+abort,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=10,
request=exclusive

-Xdump:java:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,

82 WebSphere Real Time V2 for Linux: User Guide

range=1..4,
priority=10,
request=exclusive

Removing dump agents
You can remove all default dump agents and any preceding dump options by
using -Xdump:none.

Use this option so that you can subsequently specify a completely new dump
configuration.

You can also remove dump agents of a particular type. For example, to turn off all
Heapdumps (including default agents) but leave Javadump enabled, use the
following option:

-Xdump:java+heap:events=vmstop -Xdump:heap:none

If you remove all dump agents using -Xdump:none with no further -Xdump
options, the JVM still provides these basic diagnostics:
v If a user signal (kill -QUIT) is sent to the JVM, a brief listing of the Java threads

including their stacks, status, and monitor information is written to stderr.
v If a crash occurs, information about the location of the crash, JVM options, and

native and Java stack traces are written to stderr. A system dump is also written
to the user's home directory.

Tip: Removing dump agents and specifying a new dump configuration can require
a long set of command-line options. To reuse command-line options, save the new
dump configuration in a file and use the -Xoptionsfile option.

Dump agent environment variables
The -Xdump option on the command line is the preferred method for producing
dumps for cases where the default settings are not enough. You can also produce
dumps using the JAVA_DUMP_OPTS environment variable.

If you set agents for a condition using the JAVA_DUMP_OPTS environment
variable, default dump agents for that condition are disabled; however, any
-Xdump options specified on the command line will be used.

The JAVA_DUMP_OPTS environment variable is used as follows:
JAVA_DUMP_OPTS="ON<condition>(<agent>[<count>],<agent>[<count>]),ON<condition>(<agent>[<count>],...),...)"

where:
v <condition> can be:

– ANYSIGNAL
– DUMP
– ERROR
– INTERRUPT
– EXCEPTION
– OUTOFMEMORY

v <agent> can be:
– ALL

Chapter 8. Using diagnostic tools 83

– NONE
– JAVADUMP
– SYSDUMP
– HEAPDUMP

v <count> is the number of times to run the specified agent for the specified
condition. This value is optional. By default, the agent will run every time the
condition occurs. This option is introduced in Java 6 SR2.

JAVA_DUMP_OPTS is parsed by taking the leftmost occurrence of each condition,
so duplicates are ignored. The following setting will produce a system dump for
the first error condition only:
ONERROR(SYSDUMP[1]),ONERROR(JAVADUMP)

Also, the ONANYSIGNAL condition is parsed before all others, so
ONINTERRUPT(NONE),ONANYSIGNAL(SYSDUMP)

has the same effect as
ONANYSIGNAL(SYSDUMP),ONINTERRUPT(NONE)

If the JAVA_DUMP_TOOL environment variable is set, that variable is assumed to
specify a valid executable name and is parsed for replaceable fields, such as %pid.
If %pid is detected in the string, the string is replaced with the JVM's own process
ID. The tool specified by JAVA_DUMP_TOOL is run after any system dump or
Heapdump has been taken, before anything else.

From Java 6 SR 2, the dump settings are applied in the following order, with the
settings later in the list taking precedence:
1. Default JVM dump behavior.
2. -Xdump command-line options that specify -Xdump:<type>:defaults, see

“defaults option” on page 81.
3. DISABLE_JAVADUMP, IBM_HEAPDUMP, and IBM_HEAP_DUMP

environment variables.
4. IBM_JAVADUMP_OUTOFMEMORY and

IBM_HEAPDUMP_OUTOFMEMORY environment variables.
5. JAVA_DUMP_OPTS environment variable.
6. Remaining -Xdump command-line options.

Prior to Java 6 SR 2, the DISABLE_JAVADUMP, IBM_HEAPDUMP, and
IBM_HEAP_DUMP environment variables took precedence over the
JAVA_DUMP_OPTS environment variable.

From Java 6 SR 2, setting JAVA_DUMP_OPTS only affects those conditions you
specify. Actions on other conditions are left unchanged. Prior to Java 6 SR 2, setting
JAVA_DUMP_OPTS overrides settings for all the conditions.

Signal mappings
The signals used in the JAVA_DUMP_OPTS environment variable map to multiple
operating system signals.

The mapping of operating system signals to the "condition" when you are setting
the JAVA_DUMP_OPTS environment variable is as follows:

84 WebSphere Real Time V2 for Linux: User Guide

EXCEPTION SIGTRAP

SIGILL

SISEGV

SIGFPE

SIGBUS

SIGXCPU

SIGXFSZ

INTERRUPT SIGINT

SIGTERM

SIGHUP

ERROR SIGABRT

DUMP SIGQUIT

Dump agent default locations
Dump output is written to different files, depending on the type of the dump. File
names include a time stamp.
v System dumps: Output is written to a file named core.%Y%m%d.%H%M%S.%pid.dmp.
v Javadumps: Output is written to a file named javacore.%Y%m%d.%H%M%S.%pid.

%seq.txt. See “Using Javadump” for more information.
v Heapdumps: Output is written to a file named heapdump.%Y%m%d.%H%M%S.

%pid.phd. See “Using Heapdump” on page 98 for more information.

Disabling dump agents with -Xrs
When using a debugger such as GDB or WinDbg to diagnose problems in JNI
code, you might want to disable the signal handler of the Java runtime so that any
signals received are handled by the operating system.

Using the -Xrs command-line option prevents the Java runtime handling exception
signals such SIGSEGV and SIGABRT. When the Java runtime signal handler is
disabled, a SIGSEGV or GPF crash does not call the JVM dump agents. Instead,
dumps are produced depending on the operating system.

Disabling dump agents in Linux

If configured correctly, most Linux distributions produce a core file called core.pid
in the process working directory when a process crashes. See “Setting up and
checking your Linux environment” on page 36 for details on the required system
configuration. Core dumps produced natively by Linux can be processed with
jextract and analyzed with tools such as jdmpview and DTFJ. The Linux operating
system core dump might not contain all the information included in a core dump
produced by the JVM dump agents.

Using Javadump
Javadump produces files that contain diagnostic information related to the JVM
and a Java application captured at a point during execution. For example, the
information can be about the operating system, the application environment,
threads, stacks, locks, and memory.

Chapter 8. Using diagnostic tools 85

By default, a Javadump occurs when the JVM terminates unexpectedly. A
Javadump can also be triggered by sending specific signals to the JVM. Javadumps
are human readable.

The preferred way to control the production of Javadumps is by enabling dump
agents (see “Using dump agents” on page 71) using –Xdump:java: on application
startup. You can also control Javadumps by the use of environment variables. See
“Environment variables and Javadump” on page 97.

Default agents are in place that (if not overridden) create Javadumps when the
JVM terminates unexpectedly or when an out-of-memory exception occurs.
Javadumps are also triggered by default when specific signals are received by the
JVM.

Note: Javadump is also known as Javacore. Javacore is NOT the same as a core
file, which is generated by a system dump.
Related information

“Javadumps” on page 75
Javadumps are an internally generated and formatted analysis of the JVM, giving
information that includes the Java threads present, the classes loaded, and heap
statistics.

Enabling a Javadump
Javadumps are enabled by default. You can turn off the production of Javadumps
with -Xdump:java:none.

You are not recommended to turn off Javadumps because they are an essential
diagnostics tool.

Use the -Xdump:java option to give more fine-grained control over the production
of Javadumps. See “Using dump agents” on page 71 for more information.

Triggering a Javadump
Javadumps are triggered by a number of events, both in error situations and
user-initiated.

By default, a Javadump is triggered when one of the following error conditions
occurs:

A fatal native exception
Not a Java Exception. A “fatal” exception is one that causes the JVM to
stop. The JVM handles this by producing a system dump followed by a
snap trace file, a Javadump, and then terminating the process.

The JVM has insufficient memory to continue operation
There are many reasons for running out of memory. See Chapter 7,
“Problem determination,” on page 35 for more information.

You can also initiate a Javadump to obtain diagnostic information in one of the
following ways:

You can send a signal to the JVM from the command line

The signal for Linux is SIGQUIT. Use the command kill -QUIT n to send
the signal to a process with process id (PID) n. Alternatively, press
CTRL+\ in the shell window that started Java. (CTRL+V on z/OS.)

86 WebSphere Real Time V2 for Linux: User Guide

The JVM will continue operation after the signal has been handled.

You can use the JavaDump() method in your application

The com.ibm.jvm.Dump class contains a static JavaDump() method that
causes Java code to initiate a Javadump. In your application code, add a
call to com.ibm.jvm.Dump.JavaDump(). This call is subject to the same
Javadump environment variables that are described in “Enabling a
Javadump” on page 86.

The JVM will continue operation after the JavaDump has been produced.

You can initiate a Javadump using the wasadmin utility

In a WebSphere Application Server environment, use the wasadmin utility
to initiate a dump.

The JVM will continue operation after the JavaDump has been produced.

You can configure a dump agent to trigger a Javadump
Use the -Xdump:java: option to configure a dump agent on the command
line. See “Using the -Xdump option” on page 71 for more information.

You can use the trigger trace option to generate a Javadump
Use the -Xtrace:trigger option to produce a Javadump when the substring
method shown in the following example is called:
-Xtrace:trigger=method{java/lang/String.substring,javadump}

For a detailed description of this trace option, see
“trigger=<clause>[,<clause>][,<clause>]...” on page 136

Interpreting a Javadump
This section gives examples of the information contained in a Javadump and how
it can be useful in problem solving.

The content and range of information in a Javadump might change between JVM
versions or service refreshes. Some information might be missing, depending on
the operating system platform and the nature of the event that produced the
Javadump.

Javadump tags
The Javadump file contains sections separated by eyecatcher title areas to aid
readability of the Javadump.

The first such eyecatcher is shown as follows:
NULL --
0SECTION ENVINFO subcomponent dump routine
NULL =================================

Different sections contain different tags, which make the file easier to parse for
performing simple analysis.

You can also use DTFJ to parse a Javadump, see “Using the Diagnostic Tool
Framework for Java” on page 190 for more information.

An example tag (1CIJAVAVERSION) is shown as follows:
1CIJAVAVERSION J2RE 6.0 IBM J9 2.5 AIX ppc-32 build jvmap32srt60sr2-20090513_35395

Normal tags have these characteristics:

Chapter 8. Using diagnostic tools 87

v Tags are up to 15 characters long (padded with spaces).
v The first digit is a nesting level (0,1,2,3).
v The second and third characters identify the section of the dump. The major

sections are:
CI Command-line interpreter
CL Class loader
LK Locking
ST Storage (Memory management)
TI Title
XE Execution engine

v The remainder is a unique string, JAVAVERSION in the previous example.

Special tags have these characteristics:
v A tag of NULL means the line is just to aid readability.
v Every section is headed by a tag of 0SECTION with the section title.

Here is an example of some tags taken from the start of a dump. The components
are highlighted for clarification.
NULL --
0SECTION TITLE subcomponent dump routine
NULL ===============================
1TISIGINFO Dump Event "user" (00004000) received
1TIDATETIME Date: 2009/06/03 at 06:54:19
1TIFILENAME Javacore filename: /home/user/javacore.20090603.065419.315480.0001.txt
NULL --
0SECTION GPINFO subcomponent dump routine
NULL ================================
2XHOSLEVEL OS Level : AIX 6.1
2XHCPUS Processors -
3XHCPUARCH Architecture : ppc
3XHNUMCPUS How Many : 8
3XHNUMASUP NUMA is either not supported or has been disabled by user

For the rest of the topics in this section, the tags are removed to aid readability.

TITLE, GPINFO, and ENVINFO sections
At the start of a Javadump, the first three sections are the TITLE, GPINFO, and
ENVINFO sections. They provide useful information about the cause of the dump.

The following example shows some output taken from a simple Java test program
using the -Xtrace option, that deliberately causes a “general protection fault”
(GPF).

TITLE
Shows basic information about the event that caused the generation of the
Javadump, the time it was taken, and its name.

GPINFO
Varies in content depending on whether the Javadump was produced because
of a GPF or not. It shows some general information about the operating
system. If the failure was caused by a GPF, GPF information about the failure
is provided, in this case showing that the protection . The registers specific to
the processor and architecture are also displayed.

The GPINFO section also refers to the vmState, recorded in the console output as
VM flags. The vmState is the thread-specific state of what was happening in

88 WebSphere Real Time V2 for Linux: User Guide

the JVM at the time of the crash. The value for vmState is a 32-bit hexadecimal
number of the format MMMMSSSS, where MMMM is the major component
and SSSS is component specific code.

Major component Code number

INTERPRETER 0x10000

GC 0x20000

GROW_STACK 0x30000

JNI 0x40000

JIT_CODEGEN 0x50000

BCVERIFY 0x60000

RTVERIFY 0x70000

SHAREDCLASSES 0x80000

In the following example, the value for vmState is VM flags:00040000, which
indicates a crash in the JNI component.

When the vmState major component is JNI, the crash might be caused by
customer JNI code or by Java SDK JNI code. Check the Javadump to reveal
which JNI routine was called at the point of failure. The JNI is the only
component where a crash might be caused by customer code.

When the vmState major component is JIT_CODEGEN, see the information at
“JIT and AOT problem determination” on page 150.

ENVINFO
Shows information about the JRE level that failed and details about the
command line that launched the JVM process and the JVM environment in
place.

0SECTION TITLE subcomponent dump routine
NULL ===============================
1TISIGINFO Dump Event "gpf" (00002000) received
1TIDATETIME Date: 2009/06/09 at 09:10:19
1TIFILENAME Javacore filename: /home/test/javacore.20090609.091012.27334.0003.txt
NULL --
0SECTION GPINFO subcomponent dump routine
NULL ================================
2XHOSLEVEL OS Level : Linux 2.6.16-rtj12.12smp
2XHCPUS Processors -
3XHCPUARCH Architecture : x86
3XHNUMCPUS How Many : 4
3XHNUMASUP NUMA is either not supported or has been disabled by user
NULL
1XHEXCPCODE J9Generic_Signal_Number: 00000004
1XHEXCPCODE Signal_Number: 0000000B
1XHEXCPCODE Error_Value: 00000000
1XHEXCPCODE Signal_Code: 00000001
1XHEXCPCODE Handler1: B7728EBA
1XHEXCPCODE Handler2: B77002A5
1XHEXCPCODE InaccessibleAddress: 00000000
NULL
1XHEXCPMODULE Module: ./myNative
1XHEXCPMODULE Module_base_address: A59EE000
1XHEXCPMODULE Symbol: Java_myNativeCrash_Crash
1XHEXCPMODULE Symbol_address: A59EE54C
NULL
1XHREGISTERS Registers:
2XHREGISTER EDI: A59EE54C
2XHREGISTER ESI: 00000000
2XHREGISTER EAX: 00000000
2XHREGISTER EBX: 00000088
2XHREGISTER ECX: 000000AC
2XHREGISTER EDX: 00000000
2XHREGISTER EIP: A59EE55C
2XHREGISTER ES: 0000007B

Chapter 8. Using diagnostic tools 89

2XHREGISTER DS: 0000007B
2XHREGISTER ESP: B7FB003C
2XHREGISTER EFlags: 00010296
2XHREGISTER CS: 00000073
2XHREGISTER SS: 0000007B
2XHREGISTER EBP: B7FB0044
NULL
1XHFLAGS VM flags:00040000
NULL
NULL --
0SECTION ENVINFO subcomponent dump routine
NULL =================================
1CIJAVAVERSION J2RE 6.0 IBM J9 2.5 Linux x86-32 build jvmxi32rt60sr2-20090605_36710
1CIVMVERSION VM build 20090605_036710
1CIJITVERSION JIT enabled, AOT enabled - r10_20090603_1712
1CIGCVERSION GC - 20090601_AA
1CIRUNNINGAS Running as a standalone JVM
1CICMDLINE sdk/jre/bin/java -Xrealtime myNativeCrash
1CIJAVAHOMEDIR Java Home Dir: /home/test/sdk/jre
1CIJAVADLLDIR Java DLL Dir: /home/test/sdk/jre/bin
1CISYSCP Sys Classpath: /home/test/sdk/jre/lib/i386/realtime/jclSC160/realtime.jar....
1CIUSERARGS UserArgs:
2CIUSERARG -Xjcl:jclscar_25
2CIUSERARG -Dcom.ibm.oti.vm.bootstrap.library.path=/home/test/sdk/jre/lib/i386/realtime:/home/test/sdk/jre/lib/i386
2CIUSERARG -Dsun.boot.library.path=/home/test/sdk/jre/lib/i386/realtime:/home/test/sdk/jre/lib/i386
2CIUSERARG -Djava.library.path=/home/test/sdk/jre/lib/i386/realtime:/home/test/sdk/jre/lib/i386:.:/usr/lib
2CIUSERARG -Djava.home=/home/test/sdk/jre
2CIUSERARG -Djava.ext.dirs=/home/test/sdk/jre/lib/ext
2CIUSERARG -Duser.dir=/home/test
2CIUSERARG _j2se_j9=1119744 0xB77AC1E0
2CIUSERARG -Xdump
2CIUSERARG -Djava.class.path=.
2CIUSERARG -Xrealtime
2CIUSERARG -Dsun.java.command=myNativeCrash
2CIUSERARG -Dsun.java.launcher=SUN_STANDARD
2CIUSERARG -Dsun.java.launcher.pid=27334
2CIUSERARG _port_library 0xB77AE600
2CIUSERARG _org.apache.harmony.vmi.portlib 0x0805C998

In the example above, the following lines show where the crash occurred:
1XHEXCPMODULE Module: ./myNative
1XHEXCPMODULE Module_base_address: A59EE000
1XHEXCPMODULE Symbol: Java_myNativeCrash_Crash
1XHEXCPMODULE Symbol_address: A59EE54C

Storage Management (MEMINFO)
The MEMINFO section provides information about the Memory Manager.

See Using the Metronome Garbage Collector for details about how the memory
manager component works.

This part of the Javadump gives various storage management values (in
hexadecimal), including the free space and current size of the heap. It also contains
garbage collection history data, described in “Default memory management
tracing” on page 119. Garbage collection history data is shown as a sequence of
tracepoints, each with a timestamp, ordered with the most recent tracepoint first.

Javadumps produced by the standard JVM contain a “GC History” section. This
information is not contained in Javadumps produced when using the Real Time
JVM. Use the -verbose:gc option or the JVM snap trace to obtain information about
GC behavior. See “Using verbose:gc information” on page 20 and “Snap traces” on
page 76 for more details.

The following example shows some typical output. All the values are output as
hexadecimal values.

90 WebSphere Real Time V2 for Linux: User Guide

0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STMEMTYPE Object Memory
NULL region start end size name
1STHEAP 0x080FA804 0xF2CE0000 0xF6CD0000 0x03FF0000 Default
NULL
1STMEMUSAGE Total memory available: 67108864 (0x04000000)
1STMEMUSAGE Total memory in use: 01344960 (0x001485C0)
1STMEMUSAGE Total memory free: 65763904 (0x03EB7A40)
NULL
1STSEGTYPE Internal Memory
NULL segment start alloc end type size
1STSEGMENT 0x080F7530 0x0820A008 0x0820A008 0x0821A008 0x01000040 0x00010000
1STSEGMENT 0x080F7588 0x08302E48 0x08302E48 0x08312E48 0x01000040 0x00010000
1STSEGMENT 0x080F75E0 0x0827CCF8 0x0827CCF8 0x0828CCF8 0x01000040 0x00010000
1STSEGMENT 0x082DC9D0 0x08342E68 0x08342E68 0x08352E68 0x01000040 0x00010000
<< lines removed for clarity >>

NULL
1STSEGUSAGE Total memory available: 00611268 (0x000953C4)
1STSEGUSAGE Total memory in use: 00000000 (0x00000000)
1STSEGUSAGE Total memory free: 00611268 (0x000953C4)
NULL
1STSEGTYPE Class Memory
NULL segment start alloc end type size
1STSEGMENT 0xF29B7CB0 0xF24890C8 0xF248A040 0xF24910C8 0x00010040 0x00008008
1STSEGMENT 0xF29B7C58 0xF2568008 0xF256B868 0xF2588008 0x00020040 0x00020000
1STSEGMENT 0xF29B7C00 0xF29BBD60 0xF29C27B8 0xF29C3D60 0x00010040 0x00008008
1STSEGMENT 0xF29B7BA8 0xF25DC008 0xF25F4A98 0xF25FC008 0x00020040 0x00020000
<< lines removed for clarity >>

NULL
1STSEGUSAGE Total memory available: 01804756 (0x001B89D4)
1STSEGUSAGE Total memory in use: 01542116 (0x001787E4)
1STSEGUSAGE Total memory free: 00262640 (0x000401F0)
NULL
1STSEGTYPE JIT Code Cache
NULL segment start alloc end type size
1STSEGMENT 0x0815B0B8 0xF2B71000 0xF2BF1000 0xF2BF1000 0x00000068 0x00080020
NULL
1STSEGUSAGE Total memory available: 00524320 (0x00080020)
1STSEGUSAGE Total memory in use: 00524288 (0x00080000)
1STSEGUSAGE Total memory free: 00000032 (0x00000020)
NULL
1STSEGTYPE JIT Data Cache
NULL segment start alloc end type size
1STSEGMENT 0x0815B258 0xF2AF0008 0xF2AFB818 0xF2B70008 0x00000048 0x00080000
NULL
1STSEGUSAGE Total memory available: 00524288 (0x00080000)
1STSEGUSAGE Total memory in use: 00047120 (0x0000B810)
1STSEGUSAGE Total memory free: 00477168 (0x000747F0)

Locks, monitors, and deadlocks (LOCKS)
An example of the LOCKS component part of a Javadump taken during a
deadlock.

A lock, also referred to as a monitor, prevents more than one entity from accessing
a shared resource. Each object in Java has an associated lock, obtained by using a
synchronized block or method. In the case of the JVM, threads compete for various
resources in the JVM and locks on Java objects.

This example was taken from a deadlock test program where two threads
“DeadLockThread 0” and “DeadLockThread 1” were unsuccessfully attempting to
synchronize (Java keyword) on two java/lang/Integers.

Chapter 8. Using diagnostic tools 91

You can see in the example (highlighted) that “DeadLockThread 1” has locked the
object instance java/lang/Integer@004B2290. The monitor has been created as a
result of a Java code fragment looking like “synchronize(count0)”, and this monitor
has “DeadLockThread 1” waiting to get a lock on this same object instance (count0
from the code fragment). Below the highlighted section is another monitor locked
by “DeadLockThread 0” that has “DeadLockThread 1” waiting.

This classic deadlock situation is caused by an error in application design;
Javadump is a major tool in the detection of such events.

--
LOCKS subcomponent dump routine
===============================

Monitor pool info:
Current total number of monitors: 2

Monitor Pool Dump (flat & inflated object-monitors):
sys_mon_t:0x00039B40 infl_mon_t: 0x00039B80:
java/lang/Integer@004B22A0/004B22AC: Flat locked by "DeadLockThread 1"

(0x41DAB100), entry count 1
Waiting to enter:

"DeadLockThread 0" (0x41DAAD00) sys_mon_t:0x00039B98 infl_mon_t: 0x00039BD8:
java/lang/Integer@004B2290/004B229C: Flat locked by "DeadLockThread 0"

(0x41DAAD00), entry count 1
Waiting to enter:

"DeadLockThread 1" (0x41DAB100)
JVM System Monitor Dump (registered monitors):

Thread global lock (0x00034878): <unowned>
NLS hash table lock (0x00034928): <unowned>
portLibrary_j9sig_async_monitor lock (0x00034980): <unowned>
Hook Interface lock (0x000349D8): <unowned>

< lines removed for brevity >

=======================
Deadlock detected !!!

Thread "DeadLockThread 1" (0x41DAB100)
is waiting for:

sys_mon_t:0x00039B98 infl_mon_t: 0x00039BD8:
java/lang/Integer@004B2290/004B229C:

which is owned by:
Thread "DeadLockThread 0" (0x41DAAD00)

which is waiting for:
sys_mon_t:0x00039B40 infl_mon_t: 0x00039B80:
java/lang/Integer@004B22A0/004B22AC:

which is owned by:
Thread "DeadLockThread 1" (0x41DAB100)

Threads and stack trace (THREADS)
For the application programmer, one of the most useful pieces of a Java dump is
the THREADS section. This section shows a complete list of Java threads and stack
traces.

A thread is alive if it has been started but not yet stopped. A Java thread is
implemented by a native thread of the operating system. Each thread is
represented by a line such as:

"Signal Dispatcher" TID:0x41509200, j9thread_t:0x0003659C, state:R,prio=5
(native thread ID:5820, native priority:0, native policy:SCHED_OTHER)

at com/ibm/misc/SignalDispatcher.waitForSignal(Native Method)
at com/ibm/misc/SignalDispatcher.run(SignalDispatcher.java:84)

92 WebSphere Real Time V2 for Linux: User Guide

From WebSphere Real Time for Linux V2 SR3, Java thread names are visible in the
operating system when using the ps command. For further information about
using the ps command, see “Examining process information” on page 39.

A Java dump that is produced from a no-heap real-time thread could have some
missing information. For threads where the thread name object is not visible from
the no-heap real-time thread, the text “(access error)” is printed instead of the
actual thread name.

The properties on the first line are thread name, identifier, JVM data structure
address, current state, and Java priority. The properties on the second line are the
native operating system thread ID, native operating system thread priority and
native operating system scheduling policy.

From WebSphere Real Time for Linux releases SR2 to SR3, several threads have
been assigned new identifying names. These names are visible in three ways:
v Appearing in javacore files. Not all threads appear in javacore files.
v When listing threads from the O/S using the ps command.
v When using the java.lang.Thread.getName() method.

The following table provides more information about new or affected thread
names.

Table 5. New thread names in WebSphere Real Time for Linux

Detail of thread Old thread name New thread name

An internal JVM thread used
by the garbage collection
module to dispatch the
finalization of objects by
secondary threads.

main Finalizer master

The alarm thread used by
the garbage collector.

Metronome GC Alarm Thread GC Alarm

The slave threads used for
garbage collection.

Gc Slave Thread Gc Slave

An internal JVM thread used
by the just-in-time compiler
module to sample the usage
of methods in the
application.

JIT Sampler

A thread used by the VM to
manage signals received by
the application, whether
externally or internally
generated.

Signal Reporter

The Java thread priority is mapped to an operating system priority value in a
platform-dependent manner. A large value for the Java thread priority means that
the thread has a high priority. In other words, the thread runs more frequently
than lower priority threads.

The values of state can be:
v R - Runnable - the thread is able to run when given the chance.
v CW - Condition Wait - the thread is waiting. For example, because:

Chapter 8. Using diagnostic tools 93

|
|
|

|
|

|

|

|

– A sleep() call is made
– The thread has been blocked for I/O
– A wait() method is called to wait on a monitor being notified
– The thread is synchronizing with another thread with a join() call

v S – Suspended – the thread has been suspended by another thread.
v Z – Zombie – the thread has been killed.
v P – Parked – the thread has been parked by the new concurrency API

(java.util.concurrent).
v B – Blocked – the thread is waiting to obtain a lock that something else currently

owns.

Understanding Java thread details:

Below each Java thread is a stack trace, which represents the hierarchy of Java
method calls made by the thread.

The following example is taken from the same Javadump that is used in the LOCKS
example. Two threads, “DeadLockThread 0” and “DeadLockThread 1”, are in
blocked state. The application code path that resulted in the deadlock between
“DeadLockThread 0” and “DeadLockThread 1” can clearly be seen.

There is no current thread because all the threads in the application are blocked. A
user signal generated the Javadump.

--
THREADS subcomponent dump routine
=================================

Current Thread Details

All Thread Details

Full thread dump J9SE VM (J2RE 5.0 IBM J9 2.3 Linux x86-32 build 20060714_07194_lHdSMR,
native threads):

"DestroyJavaVM helper thread" TID:0x41508A00, j9thread_t:0x00035EAC, state:CW, prio=5
(native thread ID:3924, native priority:0, native policy:SCHED_OTHER, scope:00A6D068)

"JIT Compilation Thread" TID:0x41508E00, j9thread_t:0x000360FC, state:CW, prio=11
(native thread ID:188, native priority:11, native policy:SCHED_OTHER, scope:00A6D068)

"Signal Dispatcher" TID:0x41509200, j9thread_t:0x0003659C, state:R, prio=5
(native thread ID:3192, native priority:0, native policy:SCHED_OTHER, scope:00A6D084)

at com/ibm/misc/SignalDispatcher.waitForSignal(Native Method)
at com/ibm/misc/SignalDispatcher.run(SignalDispatcher.java:84)

“DeadLockThread 0" TID:0x41DAAD00, j9thread_t:0x42238A1C, state:B, prio=5
(native thread ID:1852, native priority:0, native policy:SCHED_OTHER, scope:00A6D068)

at Test$DeadlockThread0.SyncMethod(Test.java:112)
at Test$DeadlockThread0.run(Test.java:131)

"DeadLockThread 1" TID:0x41DAB100, j9thread_t:0x42238C6C, state:B, prio=5
(native thread ID:1848, native priority:0, native policy:SCHED_OTHER, scope:00A6D068)

at Test$DeadlockThread1.SyncMethod(Test.java:160)
at Test$DeadlockThread1.run(Test.java:141)

Current Thread Details section

If the Javadump is triggered on a running Java thread, the Current Thread Details
section shows a Java thread name, properties and stack trace. This output is
generated if, for example, a GPF occurs on a Java thread, or if the
com.ibm.jvm.Dump.JavaDump() API is called.

94 WebSphere Real Time V2 for Linux: User Guide

Current Thread Details

"main" TID:0x0018D000, j9thread_t:0x002954CC, state:R, prio=5
(native thread ID:0xAD0, native priority:0x5, native policy:UNKNOWN)

at com/ibm/jvm/Dump.JavaDumpImpl(Native Method)
at com/ibm/jvm/Dump.JavaDump(Dump.java:20)
at Test.main(Test.java:26)

Typically, Javadumps triggered by a user signal do not show a current thread
because the signal is handled on a native thread, and the Java threads are
suspended while the Javadump is produced.

Stack backtrace
The stack backtrace provides a full stack trace of the failing native thread. You can
use the stack backtrace to determine if a crash is caused by an error in the JVM or
the native application.

At the top of the stack trace are the JVM signal handler and dump handling
routines. The actual point of failure is this stack frame: /home/sdk/jre/lib/i386/
realtime/libj9trc25.so [0xb743a71a].
Native thread id:0x000007DF
/home/sdk/jre/lib/i386/realtime/libj9prt25.so [0xb76a5086]
/home/sdk/jre/lib/i386/realtime/libj9dmp25.so [0xb745ad20]
/home/sdk/jre/lib/i386/realtime/libj9dmp25.so [0xb745994e]
/home/sdk/jre/lib/i386/realtime/libj9dmp25.so [0xb745f4e7]
/home/sdk/jre/lib/i386/realtime/libj9dmp25.so [0xb74508e2]
/home/sdk/jre/lib/i386/realtime/libj9dmp25.so [0xb74534d8]
/home/sdk/jre/lib/i386/realtime/libj9prt25.so [0xb76ad454]
/home/sdk/jre/lib/i386/realtime/libj9dmp25.so [0xb74534a5]
/home/sdk/jre/lib/i386/realtime/libj9dmp25.so [0xb7460424]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so [0xb76d1926]
/home/sdk/jre/lib/i386/realtime/libj9prt25.so [0xb76ad454]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so [0xb76d0e58]
/home/sdk/jre/lib/i386/realtime/libj9prt25.so [0xb76adf68]
[0xffffe440]
/home/sdk/jre/lib/i386/realtime/libj9trc25.so [0xb743a71a]
/home/sdk/jre/lib/i386/realtime/libj9trc25.so [0xb743a964]
/home/sdk/jre/lib/i386/realtime/libj9trc25.so [0xb74376a5]
/home/sdk/jre/lib/i386/realtime/libj9hookable25.so [0xb7f66950]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so [0xb76d6b24]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so [0xb76d8b9d]
/home/sdk/jre/lib/i386/realtime/libjclscar_25.so [0xb6dc648d]
/home/sdk/jre/lib/i386/realtime/libjclscar_25.so [0xb6e0dc18]
/home/sdk/jre/lib/i386/realtime/libjclscar_25.so [0xb6e12ce1]
/home/sdk/jre/lib/i386/realtime/libjclscar_25.so(J9VMDllMain+0xf0) [0xb6e12dee]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so [0xb76f8ac2]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so [0xb771d360]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so [0xb76f898e]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so [0xb76fd229]
/home/sdk/jre/lib/i386/realtime/libj9prt25.so [0xb76ad454]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so [0xb76f55bc]
/home/sdk/jre/lib/i386/realtime/libj9vm25.so(JNI_CreateJavaVM+0x99) [0xb76e55b9]
/home/sdk/jre/lib/i386/realtime/libjvm.so(JNI_CreateJavaVM+0xb0a) [0xb773db64]
/home/sdk/jre/lib/i386/j9vm/libjvm.so(JNI_CreateJavaVM+0x24e) [0xb7f74fb6]
sdk/jre/bin/java [0x804b5cc]
sdk/jre/bin/java(JavaMain+0x7e) [0x8049d0e]
/lib/tls/libpthread.so.0 [0x4ec9f7f1]
/lib/tls/libc.so.6(__clone+0x5e) [0x4eb3171e]

The example shown is from IBM WebSphere Real Time V2 for Real Time Linux.
The output is similar for IBM WebSphere Real Time V2 for Linux.

Chapter 8. Using diagnostic tools 95

Shared Classes (SHARED CLASSES)
An example of the shared classes section that includes summary information about
the shared data cache.
SHARED CLASSES subcomponent dump routine
==

Cache Summary

ROMClass start address = 0xE4EFD000
ROMClass end address = 0xE55FD000
Metadata start address = 0xE55FD778
Cache end address = 0xE5600000
Runtime flags = 0x34368297
Cache generation = 5

Cache size = 7356040
Free bytes = 1011412
ROMClass bytes = 2628000
AOT bytes = 4151573368
Java Object bytes = 0
ReadWrite bytes = 3720
Byte data bytes = 92
Metadata bytes = 147106744

Number ROMClasses = 651
Number AOT Methods = 1691
Number Java Objects = 0
Number Classpaths = 2
Number URLs = 0
Number Tokens = 0
Number Stale classes = 0
Percent Stale classes = 0%

Cache is 86% full

Cache Memory Status

Cache Name Memory type Cache path

sharedcc_rtjaxxon Memory mapped file /tmp/javasharedresources/C250D2A32P_sharedcc_rtjaxxon_G05

Cache Lock Status

Lock Name Lock type TID owning lock

Cache write lock File lock Unowned
Cache read/write lock File lock Unowned

Classloaders and Classes (CLASSES)
An example of the classloader (CLASSES) section that includes Classloader
summaries and Classloader loaded classes. Classloader summaries are the defined
class loaders and the relationship between them. Classloader loaded classes are the
classes that are loaded by each classloader.

See the Diagnostics Guide for information about the parent-delegation model.

In this example, there are the standard three classloaders:
v Application classloader (sun/misc/Launcher$AppClassLoader), which is a child

of the extension classloader.
v The Extension classloader (sun/misc/Launcher$ExtClassLoader), which is a

child of the bootstrap classloader.

96 WebSphere Real Time V2 for Linux: User Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

v The Bootstrap classloader. Also known as the System classloader.

The example that follows shows this relationship. Take the application classloader
with the full name sun/misc/Launcher$AppClassLoader. Under Classloader
summaries, it has flags -----ta-, which show that the class loader is t=trusted and
a=application (See the example for information on class loader flags). It gives the
number of loaded classes (1) and the parent classloader as sun/misc/
Launcher$ExtClassLoader.

Under the ClassLoader loaded classes heading, you can see that the application
classloader has loaded three classes, one called Test at address 0x41E6CFE0.

In this example, the System class loader has loaded a large number of classes,
which provide the basic set from which all applications derive.
--
CLASSES subcomponent dump routine
=================================
Classloader summaries

12345678: 1=primordial,2=extension,3=shareable,4=middleware,
5=system,6=trusted,7=application,8=delegating

p---st-- Loader *System*(0x00439130)
Number of loaded libraries 5
Number of loaded classes 306
Number of shared classes 306

-x--st-- Loader sun/misc/Launcher$ExtClassLoader(0x004799E8),
Parent *none*(0x00000000)
Number of loaded classes 0

-----ta- Loader sun/misc/Launcher$AppClassLoader(0x00484AD8),
Parent sun/misc/Launcher$ExtClassLoader(0x004799E8)
Number of loaded classes 1

ClassLoader loaded classes
Loader *System*(0x00439130)

java/security/CodeSource(0x41DA00A8)
java/security/PermissionCollection(0x41DA0690)

<< 301 classes removed for clarity >>
java/util/AbstractMap(0x4155A8C0)
java/io/OutputStream(0x4155ACB8)
java/io/FilterOutputStream(0x4155AE70)

Loader sun/misc/Launcher$ExtClassLoader(0x004799E8)
Loader sun/misc/Launcher$AppClassLoader(0x00484AD8)

Test(0x41E6CFE0)
Test$DeadlockThread0(0x41E6D410)
Test$DeadlockThread1(0x41E6D6E0)

Environment variables and Javadump
Although the preferred mechanism of controlling the production of Javadumps is
now by the use of dump agents using -Xdump:java, you can also use the previous
mechanism, environment variables.

The following table details environment variables specifically concerned with
Javadump production:

Environment Variable Usage Information

DISABLE_JAVADUMP Setting DISABLE_JAVADUMP to true is the
equivalent of using –Xdump:java:none and
stops the default production of javadumps.

IBM_JAVACOREDIR The default location into which the Javacore
will be written.

Chapter 8. Using diagnostic tools 97

Environment Variable Usage Information

JAVA_DUMP_OPTS Use this environment variable to control the
conditions under which Javadumps (and
other dumps) are produced. See “Dump
agent environment variables” on page 83 for
more information.

IBM_JAVADUMP_OUTOFMEMORY By setting this environment variable to false,
you disable Javadumps for an
out-of-memory exception.

Using Heapdump
The term Heapdump describes the IBM Virtual Machine for Java mechanism that
generates a dump of all the live objects that are on the Java heap; that is, those that
are being used by the running Java application.

This dump is stored in a Portable Heap Dump (PHD) file, a compressed binary
format. You can use various tools on the Heapdump output to analyze the
composition of the objects on the heap and (for example) help to find the objects
that are controlling large amounts of memory on the Java heap and the reason why
the Garbage Collector cannot collect them.
Related information

“Heapdumps” on page 76
Heapdumps produce phd format files by default.

Getting Heapdumps
By default, a Heapdump is produced when the Java heap is exhausted.
Heapdumps can be generated in other situations by use of -Xdump:heap.

See “Using dump agents” on page 71 for more detailed information about
generating dumps based on specific events. Heapdumps can also be generated
programmatically by use of the com.ibm.jvm.Dump.HeapDump() method from
inside the application code.

To see which events will trigger a dump, use -Xdump:what. See “Using dump
agents” on page 71 for more information.

By default, Heapdumps are produced in PHD format. To produce Heapdumps in
text format, see “Enabling text formatted ("classic") Heapdumps.”

Environment variables can also affect the generation of Heapdumps (although this
is a deprecated mechanism). See “Environment variables and Heapdump” on page
99 for more details.

Enabling text formatted ("classic") Heapdumps
The generated Heapdump is by default in the binary, platform-independent, PHD
format, which can be examined using the available tooling.

For more information, see “Available tools for processing Heapdumps” on page 99.
However, an immediately readable view of the heap is sometimes useful. You can
obtain this view by using the opts= suboption with -Xdump:heap (see “Using
dump agents” on page 71). For example:

98 WebSphere Real Time V2 for Linux: User Guide

v -Xdump:heap:opts=CLASSIC will start the default Heapdump agents using
classic rather than PHD output.

v -Xdump:heap:defaults:opts=CLASSIC+PHD will enable both classic and PHD
output by default for all Heapdump agents.

You can also define one of the following environment variables:
v IBM_JAVA_HEAPDUMP_TEST, which allows you to perform the equivalent of

opts=PHD+CLASSIC

v IBM_JAVA_HEAPDUMP_TEXT, which allows the equivalent of opts=CLASSIC

Available tools for processing Heapdumps
There are several tools available for Heapdump analysis through IBM support Web
sites.

The preferred Heapdump analysis tool is the IBM Monitoring and Diagnostic Tools
for Java - Memory Analyzer. The tool is available in IBM Support Assistant:
http://www.ibm.com/software/support/isa/. Information about the tool can be
found at http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/

Further details of the range of available tools can be found at http://
www.ibm.com/support/docview.wss?uid=swg24009436

Using -Xverbose:gc to obtain heap information
Use the -Xverbose:gc utility to obtain information about the Java Object heap in
real time while running your Java applications.

To activate this utility, run Java with the -verbose:gc option:

java -verbose:gc

For more information, see “Using verbose:gc information” on page 20.

Environment variables and Heapdump
Although the preferred mechanism for controlling the production of Heapdumps is
now the use of dump agents with -Xdump:heap, you can also use the previous
mechanism, environment variables.

The following table details environment variables specifically concerned with
Heapdump production:

Environment Variable Usage Information

IBM_HEAPDUMP
IBM_HEAP_DUMP

Setting either of these to any value (such as
true) enables heap dump production by
means of signals.

IBM_HEAPDUMPDIR The default location into which the
Heapdump will be written.

JAVA_DUMP_OPTS Use this environment variable to control the
conditions under which Heapdumps (and
other dumps) are produced. See “Dump
agent environment variables” on page 83 for
more information .

Chapter 8. Using diagnostic tools 99

http://www.ibm.com/software/support/isa/
http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
http://www.ibm.com/support/docview.wss?uid=swg24009436
http://www.ibm.com/support/docview.wss?uid=swg24009436

Environment Variable Usage Information

IBM_HEAPDUMP_OUTOFMEMORY By setting this environment variable to false,
you disable Heapdumps for an
OutOfMemory condition.

IBM_JAVA_HEAPDUMP_TEST Use this environment variable to cause the
JVM to generate both phd and text versions
of Heapdumps. Equivalent to
opts=PHD+CLASSIC on the -Xdump:heap
option.

IBM_JAVA_HEAPDUMP_TEXT Use this environment variable to cause the
JVM to generate a text (human readable)
Heapdump. Equivalent to opts=CLASSIC
on the -Xdump:heap option.

Text (classic) Heapdump file format
The text or classic Heapdump is a list of all object instances in the heap, including
object type, size, and references between objects, in a human-readable format.

Header record

The header record is a single record containing a string of version information.
// Version: <version string containing SDK level, platform and JVM build level>

Example:
// Version: J2RE 6.0 IBM J9 2.5 Linux x86-32 build 20081016_024574_lHdRSr

Object records

Object records are multiple records, one for each object instance on the heap,
providing object address, size, type, and references from the object.
<object address, in hexadecimal> [<length in bytes of object instance, in decimal>]
OBJ <object type> <class block reference, in hexadecimal>
<heap reference, in hexadecimal <heap reference, in hexadecimal> ...

The object address and heap references are in the heap, but the class block address
is outside the heap. All references found in the object instance are listed, including
those that are null values. The object type is either a class name including package
or a primitive array or class array type, shown by its standard JVM type signature,
see “Java VM type signatures” on page 102. Object records can also contain
additional class block references, typically in the case of reflection class instances.

Examples:

An object instance, length 28 bytes, of type java/lang/String:
0x00436E90 [28] OBJ java/lang/String

A class block address of java/lang/String, followed by a reference to a char array
instance:
0x415319D8 0x00436EB0

An object instance, length 44 bytes, of type char array:
0x00436EB0 [44] OBJ [C

100 WebSphere Real Time V2 for Linux: User Guide

A class block address of char array:
0x41530F20

An object of type array of java/util/Hashtable Entry inner class:
0x004380C0 [108] OBJ [Ljava/util/Hashtable$Entry;

An object of type java/util/Hashtable Entry inner class:
0x4158CD80 0x00000000 0x00000000 0x00000000 0x00000000 0x00421660 0x004381C0
0x00438130 0x00438160 0x00421618 0x00421690 0x00000000 0x00000000 0x00000000
0x00438178 0x004381A8 0x004381F0 0x00000000 0x004381D8 0x00000000 0x00438190
0x00000000 0x004216A8 0x00000000 0x00438130 [24] OBJ java/util/Hashtable$Entry

A class block address and heap references, including null references:
0x4158CB88 0x004219B8 0x004341F0 0x00000000

Class records

Class records are multiple records, one for each loaded class, providing class block
address, size, type, and references from the class.
<class block address, in hexadecimal> [<length in bytes of class block, in decimal>]
CLS <class type>
<class block reference, in hexadecimal> <class block reference, in hexadecimal> ...
<heap reference, in hexadecimal> <heap reference, in hexadecimal>...

The class block address and class block references are outside the heap, but the
class record can also contain references into the heap, typically for static class data
members. All references found in the class block are listed, including those that are
null values. The class type is either a class name including package or a primitive
array or class array type, shown by its standard JVM type signature, see“Java VM
type signatures” on page 102.

Examples:

A class block, length 32 bytes, for class java/lang/Runnable:
0x41532E68 [32] CLS java/lang/Runnable

References to other class blocks and heap references, including null references:
0x4152F018 0x41532E68 0x00000000 0x00000000 0x00499790

A class block, length 168 bytes, for class java/lang/Math:
0x00000000 0x004206A8 0x00420720 0x00420740 0x00420760 0x00420780 0x004207B0
0x00421208 0x00421270 0x00421290 0x004212B0 0x004213C8 0x00421458 0x00421478
0x00000000 0x41589DE0 0x00000000 0x4158B340 0x00000000 0x00000000 0x00000000
0x4158ACE8 0x00000000 0x4152F018 0x00000000 0x00000000 0x00000000

Trailer record 1

Trailer record 1 is a single record containing record counts.
// Breakdown - Classes: <class record count, in decimal>,
Objects: <object record count, in decimal>,
ObjectArrays: <object array record count, in decimal>,
PrimitiveArrays: <primitive array record count, in decimal>

Example:
// Breakdown - Classes: 321, Objects: 3718, ObjectArrays: 169,
PrimitiveArrays: 2141

Chapter 8. Using diagnostic tools 101

Trailer record 2

Trailer record 2 is a single record containing totals.
// EOF: Total 'Objects',Refs(null) :
<total object count, in decimal>,
<total reference count, in decimal>
(,total null reference count, in decimal>)

Example:
// EOF: Total 'Objects',Refs(null) : 6349,23240(7282)

Java VM type signatures

The Java VM type signatures are abbreviations of the Java types are shown in the
following table:

Java VM type signatures Java type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

L <fully qualified-class> ; <fully qualified-class>

[<type> <type>[] (array of <type>)

(<arg-types>) <ret-type> method

Using system dumps and the dump viewer
The JVM can generate native system dumps, also known as core dumps, under
configurable conditions. System dumps are typically quite large. Use the gdb tool
to analyze a system dump on Linux.

Dump agents are the primary method for controlling the generation of system
dumps. See “Using dump agents” on page 71 for more information. To maintain
backwards compatibility, the JVM supports the use of environment variables for
system dump triggering. See “Dump agent environment variables” on page 83 for
more information.

102 WebSphere Real Time V2 for Linux: User Guide

Related information

“System dumps” on page 75
System dumps involve dumping the address space and as such are generally very
large.
“Debugging with gdb” on page 42
The GNU debugger (gdb) allows you to examine the internals of another program
while the program executes or retrospectively to see what a program was doing at
the moment that it crashed.

Overview of system dumps
The JVM can produce system dumps in response to specific events. A system
dump is a raw binary dump of the process memory when the dump agent is
triggered by a failure or by an event for which a dump is requested.

Generally, you use a tool to examine the contents of a system dump. A dump
viewer tool is provided in the SDK, as described in this section, or you could use a
platform-specific debugger, such as gdb, to examine the dump. For dumps
triggered by a General Protection Fault (GPF), dumps produced by the JVM
contain some context information that you can read. You can find this failure
context information by searching in the dump for the eye-catcher
J9Generic_Signal_Number

For example:
J9Generic_Signal_Number=00000004 ExceptionCode=c0000005 ExceptionAddress=7FAB506D ContextFlags=0001003f
Handler1=7FEF79C0 Handler2=7FED8CF0 InaccessibleAddress=0000001C
EDI=41FEC3F0 ESI=00000000 EAX=41FB0E60 EBX=41EE6C01
ECX=41C5F9C0 EDX=41FB0E60
EIP=7FAB506D ESP=41C5F948 EBP=41EE6CA4

Module_base_address=7F8D0000 Offset_in_DLL=001e506d

Method_being_compiled=org/junit/runner/JUnitCore.runMain([Ljava/lang/String;)Lorg/junit/runner/Result;

Dump agents are the primary method for controlling the generation of system
dumps. See “Using dump agents” on page 71 for more information on dump
agents.

System dump defaults
There are default agents for producing system dumps when using the JVM.

Using the -Xdump:what option shows the following system dump agent:
-Xdump:system:

events=gpf+abort,
label=/home/user/core.%Y%m%d.%H%M%S.%pid.dmp,
range=1..0,
priority=999,
request=serial

This output shows that by default a system dump is produced in these cases:
v A general protection fault occurs. (For example, branching to memory location 0,

or a protection exception.)
v An abort is encountered. (For example, native code has called abort() or when

using kill -ABRT on Linux)

Chapter 8. Using diagnostic tools 103

Attention: The JVM used to produce this output when a SIGSEGV signal was
encountered. This behavior is no longer supported. Use the ABRT signal to
produce dumps.

Using the dump viewer
System dumps are produced in a platform-specific binary format, typically as a
raw memory image of the process that was running at the time the dump was
initiated. The SDK dump viewer allows you to navigate around the dump, and
obtain information in a readable form, with symbolic (source code) data where
possible.

You can view Java information (for example, threads and objects on the heap) and
native information (for example, native stacks, libraries, and raw memory
locations).

Dump extractor: jextract

To use the dump viewer you must first use the jextract tool on the system dump.
The jextract tool obtains platform specific information such as word size,
endianness, data structure layouts, and symbolic information. It puts this
information into an XML file. jextract also collects other useful files, depending on
the platform, including trace files and copies of executable files and libraries and,
by default, compresses these into a single .zip file for use in subsequent problem
diagnosis.

The jextract tool must be run in the same mode (-Xgcpolicy:metronome or not) and
the same JVM level (ideally the same machine) that was being used when the
dump was produced. The combination of the dump file and the XML file
produced by jextract allows the dump viewer (jdmpview) to analyze and display
Java information.

The extent to which jextract can analyze the information in a dump is affected by
the state of the JVM when it was taken. For example, the dump could have been
taken while the JVM was in an inconsistent state. The exclusive and prepwalk
dump options ensure that the JVM (and the Java heap) is in a safe state before
taking a system dump:
-Xdump:system:defaults:request=exclusive+prepwalk

Setting this option adds a significant performance reduction when taking a system
dump; which could cause problems in rare situations. This option is not enabled
by default.

jextract is in the directory sdk/jre/bin.

To use jextract, enter the following at a command prompt:
jextract -Xgcpolicy:metronome <core_file> [<zip_file>]

or
jextract -Xgcpolicy:metronome -nozip <core_file> [<xml_file>]

The jextract tool accepts these parameters:

-help
Provides usage information.

104 WebSphere Real Time V2 for Linux: User Guide

-nozip
Do not compress the output data.

By default, output is written to a file called <core_file>.zip in the current
directory. This file is a compressed file that contains:
v The dump
v XML produced from the dump, containing details of useful internal JVM

information
v Other files that can help in diagnosing the dump (such as trace entry definition

files)

You can use the jdmpview tool to analyze the extracted dump locally.

If you run jextract on a JVM level that is different from the one for which the
dump was produced you will see the following messages:
J9RAS.buildID is incorrect (found e8801ed67d21c6be, expecting eb4173107d21c673).
This version of jextract is incompatible with this dump.
Failure detected during jextract, see previous message(s).

The contents of the .zip file produced and the contents of the XML are subject to
change, you are advised not to design tools based on the contents of these.

Dump viewer: jdmpview

The dump viewer is a tool that allows you to examine the contents of system
dumps produced from the JVM. The dump viewer requires metadata created by
the jextract tool. It allows you to view both Java and native information from the
time the dump was produced.

jdmpview is in the directory sdk/bin.

To start jdmpview, from a shell prompt, enter:
jdmpview -Xgcpolicy:metronome -zip <zip file>

or
jdmpview -Xgcpolicy:metronome -core <core file> [-xml <xml file>]

The jdmpview-Xgcpolicy:metronome tool accepts these parameters:

-core <core file>
Specify a dump file.

-xml <xml file>
Specify a metadata file. jdmpview will guess the name of the XML file if the
-xml option is not present.

-zip <zip file>
Specify a .zip file containing the core file and associated XML file (produced by
jextract).

Note: The -core and -xml options can be used with the -zip option to specify the
core and XML files in the compressed file. Without the -core or -xml options,
jdmpview will guess the names of the files in the compressed file.

After jdmpview -Xgcpolicy:metronome processes the arguments with which it was
launched, it displays this message:

Chapter 8. Using diagnostic tools 105

For a list of commands, type "help"; for how to use "help", type "help help"
>

When you see this message, you can start using commands.

When jdmpview is used with the -zip option, temporary disk space is needed to
uncompress the dump files from the compressed file. jdmpview will use the
system temporary directory, /tmp on Linux. An alternative temporary directory can
be specified using the Java system property java.io.tmpdir. jdmpview will display
an error message if insufficient disk space is available in the temporary directory.

You can significantly improve the performance of jdmpview against large dumps
by ensuring that your system has enough memory available to avoid paging. On
large dumps (that is, ones with large numbers of objects on the heap), you might
have to run jdmpview using the -Xmx option to increase the maximum heap
available:
jdmpview -Xgcpolicy:metronome -J-Xmx<n> -zip <zip file>

To pass command-line arguments to the JVM, you must prefix them with -J.

Problems to tackle with the dump viewer
Dumps of JVM processes can arise either when you use the -Xdump option on the
command line or when the JVM is not in control (such as user-initiated dumps).

The extent to which jextract can analyze the information in a dump is affected by
the state of the JVM when it was taken. For example, the dump could have been
taken while the JVM was in an inconsistent state. The exclusive and prepwalk
dump options ensure that the JVM (and the Java heap) is in a safe state before
taking a system dump:
-Xdump:system:defaults:request=exclusive+prepwalk

Setting this option adds a significant performance reduction when taking a system
dump; which could cause problems in rare situations. This option is not enabled
by default.

jdmpview is most useful in diagnosing customer-type problems and problems with
the class libraries. A typical scenario is OutOfMemoryError exceptions in customer
applications.

For problems involving gpfs, ABENDS, SIGSEVs, and similar problems, you will
obtain more information by using a system debugger (gdb) with the dump file.
The syntax for the gdb command is
gdb <full_java_path> <system_dump_file>

For example:
gdb /sdk/jre/bin/java core.20060808.173312.9702.dmp

jdmpview can still provide useful information when used alone. Because jdmpview
allows you to observe stacks and objects, the tool enables introspection into a Java
program in the same way as a Java debugger. It allows you to examine objects,
follow reference chains and observe Java stack contents. The main difference (other
than the user interface) is that the program state is frozen; thus no stepping can
occur. However, this allows you to take periodic program snapshots and perform
analysis to see what is happening at different times.

106 WebSphere Real Time V2 for Linux: User Guide

Commands for use with jdmpview
jdmpview -Xgcpolicy:metronome is an interactive, command-line tool to explore
the information from a JVM system dump and perform various complex analysis
functions.

cd <directory_name>
Changes the current working directory, used for log files. Changes the current
working directory to <directory_name>, checking to see if it exists and is a
directory before making the change. The log files can be found in the current
working directory; a change to the current working directory has no effect on
the current log file setting because the logging filename is converted to an
absolute path when set. Note: to see what the current working directory is set
to, use the pwd command.

deadlock
Displays information about deadlocks if there are any set. This command
shows detailed information about deadlocks or “no deadlocks detected” if
there are no deadlocks. A deadlock situation consists of one or more deadlock
loops and zero or more branches attached to those loops. This command prints
out each branch attached to a loop and then the loop itself. If there is a split in
a deadlock branch, separate branches are created for each side of the split in
the branch. Deadlock branches start with a monitor that has no threads waiting
on it and the continues until it reaches a monitor that exists in another
deadlock branch or loop. Deadlock loops start and end with the same monitor.

Monitors are represented by their owner and the object associated with the
given monitor. For example, the 3435 (0x45ae67) output represents the monitor
that is owned by the thread with id 3435 and is associated the object at address
0x45ae67. Objects can be viewed by using a command like x/j 0x45ae67 and
threads can be viewed using a command like info thread 3435.

find
<pattern>,<start_address>,<end_address>,<memory_boundary>,<bytes_to_print>,<matches_to_display>

This command searches for <pattern> in the memory segment from
<start_address> to <end_address> (both inclusive), and outputs the first
<matches_to_display> matching addresses. It also displays the next
<bytes_to_print> bytes for the last match.

By default, the find command searches for the supplied pattern at every byte
in the range. If you know the pattern is aligned to a particular byte boundary,
you can specify <memory_boundary> to search once every <memory_boundary>
bytes, for example, 4 or 8 bytes.

findnext
Finds the next instance of the last string passed to find. This command is used
in conjunction with find or findptr command to continue searching for the
next matches. It repeats the previous find or findptr command (depending on
which command is most recently issued) starting from the last match.

findptr
<pattern>,<start_address>,<end_address>,<memory_boundary>,<bytes_to_print>,<matches_to_display>

Searches memory for the given pointer. findptr searches for <pattern> as a
pointer in the memory segment from <start_address> to <end_address> (both
inclusive), and outputs the first <matches_to_display> matching addresses that
start at the corresponding <memory_boundary>. It also displays the next
<bytes_to_print> bytes for the last match.

help [<command_name>]
Displays a list of commands or help for a specific command. With no

Chapter 8. Using diagnostic tools 107

parameters, help displays the complete list of commands currently supported.
When a <command_name> is specified, help lists that command's
sub-commands if it has sub-commands; otherwise, the command's complete
description is displayed.

info thread [*|<thread_name>]
Displays information about Java and native threads. The command prints the
following information about the current thread (no arguments), all threads
(“*”), or the specified thread:
v Thread id
v Registers
v Stack sections
v Thread frames: procedure name and base pointer
v Associated Java thread (if applicable):

– Name of Java thread
– Address of associated java.lang.Thread object
– State according to JVMTI specification
– State relative to java.lang.Thread.State
– The monitor the thread is waiting to enter or waiting on notify
– Thread frames: base pointer, method, and filename:line

info system
Displays the following information about the system the core dump:
v amount of memory
v operating system
v virtual machine(s) present

info class [<class_name>]
Displays the inheritance chain and other data for a given class. If no
parameters are passed to info class, it prints the number of instances of each
class and the total size of all instances of each class as well as the total number
of instances of all classes and the total size of all objects. if a class name is
passed to info class, it prints the following information about that class:
v name
v ID
v superclass ID
v class loader ID
v modifiers
v number of instances and total size of instances
v inheritance chain
v fields with modifiers (and values for static fields)
v methods with modifiers

info proc
Displays threads, command line arguments, environment variables, and shared
modules of current process.

Note: To view the shared modules used by a process, use the info sym
command.

info jitm
Displays JIT and AOT compiled methods and their addresses:
v Method name and signature
v Method start address
v Method end address

info lock
Displays a list of available monitors and locked objects

108 WebSphere Real Time V2 for Linux: User Guide

info sym
Displays a list of available modules. For each process in the address spaces,
this command outputs a list of module sections for each module with their
start and end addresses, names, and sizes.

info mmap
Displays a list of all memory segments in the address space: start address and
size.

info heap [*|<heap_name>]
Using no arguments displays the heap names and heap sections.

Using either “*” or a heap name displays the following information about all
heaps or the specified heap:
v heap name
v (heap size and occupancy)
v heap sections

– section name
– section size
– whether the section is shared
– whether the section is executable
– whether the section is read only

hexdump <hex_address> <bytes_to_print>
Displays a section of memory in a hexdump-like format. Displays
<bytes_to_print> bytes of memory contents starting from <hex_address>.

+ Displays the next section of memory in hexdump-like format. This command is
used in conjunction with the hexdump command to allow easy scrolling
forwards through memory. It repeats the previous hexdump command starting
from the end of the previous one.

- Displays the previous section of memory in hexdump-like format. This
command is used in conjunction with the hexdump command to allow easy
scrolling backwards through memory. It repeats the previous hexdump
command starting from a position before the previous one.

pwd
Displays the current working directory which is the directory where log files
are stored.

quit
Exits the core file viewing tool; any log files that are currently open are closed
before exit.

set logging <options>
Configures logging settings, starts logging, or stops logging. This allows the
results of commands to be logged to a file.

The options are:

[on|off]
Turns logging on or off. (Default: off)

file <filename>
sets the file to log to; this will be relative to the directory returned by the
pwd command unless an absolute path is specified; if the file is set while
logging is on, the change will take effect the next time logging is started.
Not set by default.

overwrite [on|off]
Turns overwriting of the specified log file on or off. When overwrite is off,

Chapter 8. Using diagnostic tools 109

log messages will be appended to the log file. When overwrite is on, the
log file will be overwritten after the set logging command. (Default: off)

redirect [on|off]
Turns redirecting to file on or off (on means that non-error output goes
only to the log file when logging is on, off means that non-error output
goes to both the console and the log file); redirection must be turned off
logging can be turned off. (Default: off)

show logging
Displays the current logging settings:
v set_logging = [on|off]
v set_logging_file =
v set_logging_overwrite = [on|off]
v set_logging_redirect = [on|off]
v current_logging_file = - file that is currently being logged to; it could be

different from set_logging_file, if that value was changed after logging was
started.

whatis <hex_address>
Displays information about what is stored at the given memory address,
<hex_address>. This command examines the memory location at <hex_address>
and tries to find out more information about this address. For example,
whether it is in an object in a heap or in the byte codes associated with a class
method.

x/ (examine)
Passes number of items to display and unit size ('b' for byte (8 bit), 'h' for half
word (16 bit), 'w' for word (32 bit), 'g' for giant word (64 bit)) to sub-command
(for example x/12bd). This is similar to the use of the x/ command in gdb
(including use of defaults).

x/J [<0xaddr>|<class_name>]
Displays information about a particular object or all objects of a class. If given
class name, all static fields with their values are printed, followed by all objects
of that class with their fields and values. If given an object address (in hex),
static fields for that object's class are not printed; the other fields and values of
that object are printed along with its address.

Note: This command ignores the number of items and unit size passed to it by
the x/ command.

x/D <0xaddr>
Displays the integer at the specified address, adjusted for the endianness of the
architecture this dump file is from.

Note: This command uses the number of items and unit size passed to it by
the x/ command.

x/X <0xaddr>
Displays the hex value of the bytes at the specified address, adjusted for the
endianness of the architecture this dump file is from.

Note: This command uses the number of items and unit size passed to it by
the x/ command.

x/K <0xaddr>
Displays the value of each section (where the size is defined by the pointer size
of this architecture) of memory, adjusted for the endianness of the architecture
this dump file is from, starting at the specified address. It also displays a

110 WebSphere Real Time V2 for Linux: User Guide

module with a module section and an offset from the start of that module
section in memory if the pointer points to that module section. If no symbol is
found, it displays a “*” and an offset from the current address if the pointer
points to an address in 4KB (4096 bytes) of the current address. While this
command can work on an arbitrary section of memory, it is probably most
useful when used on a section of memory that refers to a stack frame. To find
the memory section of a thread's stack frame, use the info thread command.

Note: This command uses the number of items and unit size passed to it by
the x/ command.

Example session
This example session illustrates a selection of the commands available and their
use.

In the example session, some lines have been removed for clarity (and terseness).
Some comments (contained inside braces) are included to explain various aspects
with some comments on individual lines looking like:
{ comment }

User input is prefaced by a “>”.
{First, invoke DTFJView using the jdmpview launcher, passing in the name of a dump.}

> jdmpview -Xgcpolicy:metronome-core core.20081020.145957.32289.0001.dmp
DTFJView version 1.0.22, using DTFJ API version 1.3
Loading image from DTFJ...
For a list of commands, type "help"; for how to use "help", type "help help"

{the output produced by help is illustrated below}

>help

info
thread displays information about Java and native threads
system displays information about the system the core dump is from
class prints inheritance chain and other data for a given class
proc displays threads, command line arguments, environment variables,

and shared modules of current process
jitm displays JIT'ed methods and their addresses
ls outputs a list of available monitors and locked objects
sym outputs a list of available modules
mmap outputs a list of all memory segments in the address space
heap displays information about Java heaps
hexdump outputs a section of memory in a hexdump-like format
+ displays the next section of memory in hexdump-like format
- displays the previous section of memory in hexdump-like format
find searches memory for a given string
deadlock displays information about deadlocks if there are any
set
logging configures several logging-related parameters, starts/stops logging
show
logging displays the current values of logging settings
quit exits the core file viewing tool
whatis gives information about what is stored at the given memory address
cd changes the current working directory, used for log files
pwd displays the current working directory
findnext finds the next instance of the last string passed to "find"
findptr searches memory for the given pointer
help displays list of commands or help for a specific command
x/ works like "x/" in gdb (including use of defaults): passes number of items to display

and unit size ('b' for byte, 'h' for halfword, 'w' for word, 'g' for giant word)
to sub-command (ie. x/12bd)

j displays information about a particular object or all objects of a class
d displays the integer at the specified address
x displays the hex value of the bytes at the specified address
k displays the specified memory section as if it were a stack frame

Chapter 8. Using diagnostic tools 111

{In jdmpview setting an output file could be done from the invocation, in DTFJView it must be
done using the "set logging" command. }

> set logging file log.txt

log file set to "log.txt"

> set logging on

logging turned on; outputting to "/home/test/log.txt"

> show logging

set_logging = on
set_logging_file = "log.txt"
set_logging_overwrite = off
set_logging_redirect = off

current_logging_file = "/home/test/log.txt"

>info thread << Displays info on current thread. Use "info thread *" for information on all threads.

native threads for address space # 0
process id: 28836

thread id: 28836
registers:
cs = 0x00000073 ds = 0x0000007b eax = 0x00000000 ebp = 0xbfe32064
ebx = 0xb7e9e484 ecx = 0x00000000 edi = 0xbfe3245c edx = 0x00000002
efl = 0x00010296 eip = 0xb7e89120 es = 0xc010007b esi = 0xbfe32471
esp = 0xbfe31c2c fs = 0x00000000 gs = 0x00000033 ss = 0x0000007b
stack sections:
0xbfe1f000 to 0xbfe34000 (length 0x15000)
stack frames:
bp: 0xbfe32064 proc name: /home/test/sdk/jre/bin/java::_fini

==== lines removed for terseness====
==== lines removed for terseness====

bp: 0x00000000 proc name: <unknown location>
properties:

associated Java thread: <no associated Java thread>

>info system

System: Linux
System Memory: 2323206144 bytes
Virtual Machine(s):
Runtime #1:
Java(TM) SE Runtime Environment(build jvmxi3260rt-20081016_24574)
IBM J9 VM(J2RE 1.6.0 IBM J9 2.5 Linux x86-32 jvmxi3260rt-20081016_24574 (JIT enabled, AOT enabled)
J9VM - 20081016_024574_lHdRSr
JIT - r10_20081015_2000
GC - 20081016_AA)

> info class << Information on all classes

Runtime #1:
instances total size class name

0 0 java/util/regex/Pattern$Slice
0 0 java/lang/Byte
0 0 java/lang/CharacterDataLatin1
2 96 sun/nio/cs/StreamEncoder$ConverterSE

1015 36540 java/util/TreeMap$Entry

==== lines removed for terseness====
==== lines removed for terseness====

2 48 [java/io/File
5 104 [java/io/ObjectStreamField

112 WebSphere Real Time V2 for Linux: User Guide

0 0 java/lang/StackTraceElement

Total number of objects: 9240
Total size of objects: 562618

> info class java/util/Random << Information on a specific class

Runtime #1:
name = java/util/Random

ID = 0x81c9fb0 superID = 0x80ea450
classLoader = 0x82307e8 modifers: public synchronized

number of instances: 1
total size of instances: 32 bytes

Inheritance chain....

java/lang/Object
java/util/Random

Fields......

static fields for "java/util/Random"
static final long serialVersionUID = 3905348978240129619 (0x363296344bf00a53)
private static final long multiplier = 25214903917 (0x5deece66d)
private static final long addend = 11 (0xb)

==== lines removed for terseness====

non-static fields for "java/util/Random"
private long seed
private double nextNextGaussian
private boolean haveNextNextGaussian

Methods......

Bytecode range(s): 81fb41c -- 81fb430: public void <init>()

==== lines removed for terseness====

Bytecode range(s): 81fb624 -- 81fb688: public synchronized double nextGaussian()
Bytecode range(s): 81fb69c -- 81fb6a4: static void <clinit>()

> info proc

address space # 0

Thread information for current process:
Thread id: 28836

Command line arguments used for current process:
/home/test/sdk/jre/bin/java -Xmx100m -Xms100m -Xtrace: DeadlockCreator

Environment variables for current process:
IBM_JAVA_COMMAND_LINE=/home/test/sdk/jre/bin/java -Xmx100m -Xms100m -Xtrace: DeadlockCreator
LIBPATH=.:/home/test/sdk/jre/bin:/home/test/sdk/jre/bin/j9vm:/usr/bin/gcc:
HISTSIZE=1000

==== lines removed for terseness====

PATH=.:/home/test/sdk/bin:/home/test/sdk/jre/bin/j9vm:/home/test/sdk/jre/bin:
/usr/bin/gcc:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/test/bin

TERM=xterm

> info jitm

start=0xb11e241c end=0xb11e288f DeadlockCreator::main([Ljava/lang/String;)V
start=0xb11e28bc end=0xb11e64ca DeadlockThreadA::syncMethod(LDeadlockThreadA;)V
start=0xb11e64fc end=0xb11ea0fa DeadlockThreadB::syncMethod(LDeadlockThreadB;)V
start=0xb11dd55c end=0xb11dd570 java/lang/Object::<init>()V

==== lines removed for terseness====

Chapter 8. Using diagnostic tools 113

==== lines removed for terseness====

start=0xb11e0f54 end=0xb11e103e java/util/zip/ZipEntry::initFields(J)V
start=0xb11e0854 end=0xb11e0956 java/util/zip/Inflater::inflateBytes([BII)I
start=0xb11e13d4 end=0xb11e14bf java/util/zip/Inflater::reset(J)V

> info ls
(un-named monitor @0x835ae50 for object @0x835ae50)
owner thread's id = <data unavailable>
object = 0x835ae50

(un-named monitor @0x835b138 for object @0x835b138)
owner thread's id = <data unavailable>
object = 0x835b138

Thread global
Raw monitor: id = <unavailable>

NLS hash table
Raw monitor: id = <unavailable>

portLibrary_j9sig_sync_monitor
Raw monitor: id = <unavailable>

portLibrary_j9sig_asynch_reporter_shutdown_monitor
Raw monitor: id = <unavailable>

==== lines removed for terseness====
==== lines removed for terseness====

Thread public flags mutex
Raw monitor: id = <unavailable>

Thread public flags mutex
Raw monitor: id = <unavailable>

JIT-QueueSlotMonitor-21
Raw monitor: id = <unavailable>

Locked objects...
java/lang/Class@0x835ae50 is locked by a thread with id <data unavailable>
java/lang/Class@0x835b138 is locked by a thread with id <data unavailable>

> info sym

modules for address space # 0
process id: 28836

> info mmap
Address: 0x1000 size: 0x1000 (4096)
Address: 0x8048000 size: 0xd000 (53248)
Address: 0x8055000 size: 0x2000 (8192)
Address: 0x8057000 size: 0x411000 (4263936)

==== lines removed for terseness====
==== lines removed for terseness====

Address: 0xffffe460 size: 0x18 (24)
Address: 0xffffe478 size: 0x24 (36)
Address: 0xffffe5a8 size: 0x78 (120)

> info heap object <<Displays information on the object heap, "info heap *" displays
information on all heaps.

Runtime #1
Heap #1: Default
Size of heap: 104857600 bytes
Occupancy : 562618 bytes (0.53%)
Section #1: Contiguous heap extent at 0xb1439000 (0x6400000 bytes)
Size: 104857600 bytes
Shared: false
Executable: false
Read Only: false

114 WebSphere Real Time V2 for Linux: User Guide

> hexdump 0xb1439000 200

b1439000: 70da0e08 0e800064 00000000 00000000 |p......d........|
b1439010: d0c20e08 05800464 00000000 80000000 |.......d........|
b1439020: 00000100 02000300 04000500 06000700 |................|
b1439030: 08000900 0a000b00 0c000d00 0e000f00 |................|
b1439040: 10001100 12001300 14001500 16001700 |................|
b1439050: 18001900 1a001b00 1c001d00 1e001f00 |................|
b1439060: 20002100 22002300 24002500 26002700 | .!.".#.$.%.&.'.|
b1439070: 28002900 2a002b00 2c002d00 2e002f00 |(.).*.+.'.-.../.|
b1439080: 30003100 32003300 34003500 36003700 |0.1.2.3.4.5.6.7.|
b1439090: 38003900 3a003b00 3c003d00 3e003f00 |8.9.:.;.<.=.>.?.|
b14390a0: 40004100 42004300 44004500 46004700 |@.A.B.C.D.E.F.G.|
b14390b0: 48004900 4a004b00 4c004d00 4e004f00 |H.I.J.K.L.M.N.O.|
b14390c0: 50005100 52005300 |P.Q.R.S.

> +

b14390c8: 54005500 56005700 58005900 5a005b00 |T.U.V.W.X.Y.Z.[.|
b14390d8: 5c005d00 5e005f00 60006100 62006300 |\.].^._.`.a.b.c.|
b14390e8: 64006500 66006700 68006900 6a006b00 |d.e.f.g.h.i.j.k.|
b14390f8: 6c006d00 6e006f00 70007100 72007300 |l.m.n.o.p.q.r.s.|
b1439108: 74007500 76007700 78007900 7a007b00 |t.u.v.w.x.y.z.{.|
b1439118: 7c007d00 7e007f00 e0df0e08 01804864 ||.}.~.........Hd|
b1439128: 00000000 00000000 90e00e08 01804c64 |..............Ld|
b1439138: 00000000 00000000 78f30e08 0e805064 |........x.....Pd|
b1439148: 00000000 b89b43b1 b89b43b1 00000000 |......C...C.....|
b1439158: 78f30e08 0e805664 00000000 109c43b1 |x.....Vd......C.|
b1439168: 109c43b1 00000000 78f30e08 0e805c64 |..C.....x.....\d|
b1439178: 00000000 709c43b1 709c43b1 00000000 |....p.C.p.C.....|
b1439188: 78f30e08 0e806264 |x.....bd

> -

b1439000: 70da0e08 0e800064 00000000 00000000 |p......d........|
b1439010: d0c20e08 05800464 00000000 80000000 |.......d........|
b1439020: 00000100 02000300 04000500 06000700 |................|
b1439030: 08000900 0a000b00 0c000d00 0e000f00 |................|
b1439040: 10001100 12001300 14001500 16001700 |................|
b1439050: 18001900 1a001b00 1c001d00 1e001f00 |................|
b1439060: 20002100 22002300 24002500 26002700 | .!.".#.$.%.&.'.|
b1439070: 28002900 2a002b00 2c002d00 2e002f00 |(.).*.+.'.-.../.|
b1439080: 30003100 32003300 34003500 36003700 |0.1.2.3.4.5.6.7.|
b1439090: 38003900 3a003b00 3c003d00 3e003f00 |8.9.:.;.<.=.>.?.|
b14390a0: 40004100 42004300 44004500 46004700 |@.A.B.C.D.E.F.G.|
b14390b0: 48004900 4a004b00 4c004d00 4e004f00 |H.I.J.K.L.M.N.O.|
b14390c0: 50005100 52005300 |P.Q.R.S.

> whatis 0xb143a000

Runtime #1:
heap #1 - name: object heap

0xb143a000 is within the heap segment: b1439000 -- b7839000
0xb143a000 is within an object on the heap.

Offset 8 within [char instance @ 0xb1439ff8

{ find command parameters are: <pattern>,<start_address>,<end_address>,<memory_boundary>,
<bytes_to_print>,<matches_to_display> }

> find a,0b1439000,0xb1440000,10,20,5
#0: 0xb1439c00
#1: 0xb1439c46
#2: 0xb143a1be
#3: 0xb143a1c8
#4: 0xb143a1e6

b143a1e6: 61007000 70006500 6e006900 6e006700 |a.p.p.e.n.i.n.g.|
b143a1f6: 45007800 |E.x.

> findnext <<Repeats find command, starting from last match.
#0: 0xb143a72c
#1: 0xb143b3f2
#2: 0xb143b47e
#3: 0xb143b492
#4: 0xb143b51e

Chapter 8. Using diagnostic tools 115

b143b51e: 61002e00 73007000 65006300 69006600 |a...s.p.e.c.i.f.|
b143b52e: 69006300 |i.c.

> findnext
#0: 0xb143b532
#1: 0xb143b5e6
#2: 0xb143b5fa
#3: 0xb143b71c
#4: 0xb143bac8

b143bac8: 61007000 00000000 10cd0e08 0e80b46e |a.p............n|
b143bad8: 00000000 |....

{ x/j can be passed an object address or a class name }
> x/j 0xb1439000

Runtime #1:
heap #1 - name: object heap

java/lang/String$CaseInsensitiveComparator @ 0xb1439000

{If passed an object address the (non-static) fields and values of the object will be printed }

> x/j java/lang/Float

Runtime #1:
heap #1 - name: object heap

static fields for "java/lang/Float"
public static final float POSITIVE_INFINITY = Infinity (0x7f800000)
public static final float NEGATIVE_INFINITY = -Infinity (0xffffffffff800000)
public static final float NaN = NaN (0x7fc00000)
public static final float MAX_VALUE = 3.4028235E38 (0x7f7fffff)
public static final float MIN_VALUE = 1.4E-45 (0x1)
public static final int SIZE = 32 (0x20)
public static final Class TYPE = <object> @ 0x80ec368
private static final long serialVersionUID = -2671257302660747028 (0xdaedc9a2db3cf0ec)

<no object of class "java/lang/Float" exists>

{If passed a class name the static fields and their values are printed, followed by all objects of
that class }

> x/d 0xb1439000

0xb1439000: 135191152 <<Integer at specified address

> x/x 0xb1439000

0xb1439000: 080eda70 <<Hex value ofthe bytes at specified address

{ "cd" and "pwd" are self explanatory. }
> pwd

/home/test

> cd deadlock/
> pwd

/home/test/deadlock

> quit

jdmpview commands quick reference
A short list of the commands you use with jdmpview.

The following table shows the jdmpview - quick reference:

Command Sub-command Description

help Displays a list of commands or help for a specific
command.

116 WebSphere Real Time V2 for Linux: User Guide

Command Sub-command Description

info

thread Displays information about Java and native threads.

system Displays information about the system the core dump is
from.

class Displays the inheritance chain and other data for a given
class.

proc Displays threads, command line arguments, environment
variables, and shared modules of current process.

jitm Displays JIT and AOT compiled methods and their
addresses.

lock Displays a list of available monitors and locked objects.

sym Displays a list of available modules.

mmap Displays a list of all memory segments in the address
space.

heap Displays information about all heaps or the specified heap.

hexdump Displays a section of memory in a hexdump-like format.

+ Displays the next section of memory in hexdump-like
format.

- Displays the previous section of memory in hexdump-like
format.

whatis Displays information about what is stored at the given
memory address.

find Searches memory for a given string.

findnext Finds the next instance of the last string passed to “find”.

findptr Searches memory for the given pointer.

x/
(examine)

Examine works like "x/" in gdb (including use of defaults):
passes number of items to display and unit size ('b' for
byte (8 bit), 'h' for half word (16 bit), 'w' for word (32 bit),
'g' for giant word (64 bit)) to sub-command (for example
x/12bd).

J Displays information about a particular object or all objects
of a class.

D Displays the integer at the specified address.

X Displays the hex value of the bytes at the specified address.

K Displays the specified memory section as if it were a stack
frame.

deadlock Displays information about deadlocks if there are any set.

set logging Configures logging settings, starts logging, or stops
logging. This allows the results of commands to be logged
to a file.

show
logging

Displays the current values of logging settings.

cd Changes the current working directory, used for log files.

pwd Displays the current working directory.

quit Exits exits the core file viewing tool; any log files that are
currently open will be closed before the tool exits.

Chapter 8. Using diagnostic tools 117

Tracing Java applications and the JVM
JVM trace is a trace facility that is provided in all IBM-supplied JVMs with
minimal affect on performance. In most cases, the trace data is kept in a compact
binary format, that can be formatted with the Java formatter that is supplied.

Tracing is enabled by default, together with a small set of trace points going to
memory buffers. You can enable tracepoints at runtime by using levels,
components, group names, or individual tracepoint identifiers.

Trace is a powerful tool to help you diagnose the JVM.
Related concepts

“Troubleshooting the Metronome Garbage Collector” on page 20
Using the command-line options, you can control the frequency of Metronome
garbage collection, out of memory exceptions, and the Metronome behavior on
explicit system calls.

What can be traced?
You can trace JVM internals, applications, and Java method or any combination of
those.

JVM internals
The IBM Virtual Machine for Java is extensively instrumented with tracepoints
for trace. Interpretation of this trace data requires knowledge of the internal
operation of the JVM, and is provided to diagnose JVM problems.

No guarantee is given that tracepoints will not vary from release to release and
from platform to platform.

Applications
JVM trace contains an application trace facility that allows tracepoints to be
placed in Java code to provide trace data that will be combined with the other
forms of trace. There is an API in the com.ibm.jvm.Trace class to support this.
Note that an instrumented Java application runs only on an IBM-supplied
JVM.

Java methods
You can trace entry to and exit from Java methods run by the JVM. You can
select method trace by classname, method name, or both. You can use
wildcards to create complex method selections.

JVM trace can produce large amounts of data in a very short time. Before running
trace, think carefully about what information you need to solve the problem. In
many cases, where you need only the trace information that is produced shortly
before the problem occurs, consider using the wrap option. In many cases, just use
internal trace with an increased buffer size and snap the trace when the problem
occurs. If the problem results in a thread stack dump or operating system signal or
exception, trace buffers are snapped automatically to a file that is in the current
directory. The file is called: Snapnnnn.yyyymmdd.hhmmssth.process.trc.

You must also think carefully about which components need to be traced and what
level of tracing is required. For example, if you are tracing a suspected shared
classes problem, it might be enough to trace all components at level 1, and j9shr at
level 9, while maximal can be used to show parameters and other information for
the failing component.

118 WebSphere Real Time V2 for Linux: User Guide

Types of tracepoint
There are two types of tracepoints inside the JVM: regular and auxiliary.

Regular tracepoints

Regular tracepoints include:
v method tracepoints
v application tracepoints
v data tracepoints inside the JVM
v data tracepoints inside class libraries

You can display regular tracepoint data on the screen or save the data to a file. You
can also use command line options to trigger specific actions when regular
tracepoints fire. See the section “Detailed descriptions of trace options” on page
123 for more information about command line options.

Auxiliary tracepoints

Auxiliary tracepoints are a special type of tracepoint that can be fired only when
another tracepoint is being processed. An example of auxiliary tracepoints are the
tracepoints containing the stack frame information produced by the jstacktrace
-Xtrace:trigger command. You cannot control where auxiliary tracepoint data is
sent and you cannot set triggers on auxiliary tracepoints. Auxiliary tracepoint data
is sent to the same destination as the tracepoint that caused them to be generated.

Default tracing
By default, the equivalent of the following trace command line is always available
in the JVM:
-Xtrace:maximal=all{level1},exception=j9mm{gclogger}

The data generated by those tracepoints is continuously captured in wrapping, per
thread memory buffers. (For information about specific options, see “Detailed
descriptions of trace options” on page 123.)

You can find tracepoint output in the following diagnostics data:
v System dumps, extracted using jdmpview.
v Snap traces, generated when the JVM encounters a problem or an output file is

specified. “Using dump agents” on page 71 describes more ways to create a
snap trace.

v For exception trace only, in Javadumps.

Default memory management tracing

The default trace options are designed to ensure that Javadumps always contain a
record of the most recent memory management history, regardless of how much
JVM activity has occurred since the garbage collection cycle was last called.

The exception=j9mm{gclogger} clause of the default trace set specifies that a
history of garbage collection cycles that have occurred in the JVM is continuously
recorded. The gclogger group of tracepoints in the j9mm component constitutes a
set of tracepoints that record a snapshot of each garbage collection cycle. These
tracepoints are recorded in their own separate buffer called the exception buffer so
that they are not overwritten by the higher frequency tracepoints of the JVM.

Chapter 8. Using diagnostic tools 119

The GC History section of the Javadump is based on the information in the
exception buffer. If a garbage collection cycle has occurred in a traced JVM the
Javadump should contain a GC History section.

Default assertion tracing

The JVM includes assertions, implemented as special trace points. By default,
internal assertions are detected and diagnostics logs are produced to help assess
the error.

The JVM will continue executing after the logs have been produced, but assertion
failures usually indicate a serious problem and the JVM might exit with a
subsequent error. If the JVM does not encounter another error, an operator should
still restart the JVM as soon as possible. A service request should be sent to IBM
including the standard error output and the .trc and .dmp files produced.

When an assertion trace point is hit, a message similar to the following output is
produced on the standard error stream:

16:43:48.671 0x10a4800 j9vm.209 * ** ASSERTION FAILED ** at jniinv.c:251: ((javaVM == ((void *)0)))

This error stream is followed with information about the diagnostics logs
produced:
JVMDUMP007I JVM Requesting System Dump using 'core.20060426.124348.976.dmp'
JVMDUMP010I System Dump written to core.20060426.124348.976.dmp
JVMDUMP007I JVM Requesting Snap Dump using 'Snap0001.20060426.124648.976.trc'
JVMDUMP010I Snap Dump written to Snap0001.20060426.124648.976.trc

Assertions are a special kind of trace point and can be enabled or disabled using
the standard trace command-line options. See “Controlling the trace” on page 122
for more details.

Where does the data go?
Trace data can be written to a number of locations.

Trace data can go into:
v Memory buffers that can be dumped or snapped when a problem occurs
v One or more files that are using buffered I/O
v An external agent in real time
v stderr in real time
v Any combination of the above

Writing trace data to memory buffers
The use of memory buffers for trace is a very efficient method of running trace
because no file I/O is performed until either a problem is detected or an API is
used to snap the buffers to a file.

Buffers are allocated on a per-thread principle. This principle removes contention
between threads and prevents trace data for individual threads from being
swamped by other threads. For example, if one particular thread is not being
dispatched, its trace information is still available when the buffers are dumped or
snapped. Use -Xtrace:buffers=<size> to control the size of the buffer that is
allocated to each thread.

120 WebSphere Real Time V2 for Linux: User Guide

Note: On some computers, power management affects the timers that trace uses,
and gives misleading information. For reliable timing information, disable power
management.

To examine the trace data captured in these memory buffers, you must snap or
dump, then format the buffers.

Snapping buffers
Under default conditions, a running JVM collects a small amount of trace data
in special wraparound buffers. This data is dumped to a snap file under the
conditions listed as follows. You can use the -Xdump:snap option to vary the
events that cause a snap trace to be produced. This file is in a binary format
and requires the use of the supplied trace formatter so that you can read it.

Buffers are snapped when:
v An uncaught OutOfMemoryError occurs.
v An operating system signal or exception occurs.
v The com.ibm.jvm.Trace.snap() Java API is called.
v The JVMRI TraceSnap function is called.

The resulting snap file is placed into the current working directory with a
name of the format Snapnnnn.yyyymmdd.hhmmssth.process.trc, where nnnn is a
sequence number starting at 0001 (at JVM startup), yyyymmdd is the current
date, hhmmssth is the current time, and process is the process identifier.

Extracting buffers from system dump
You can extract the buffers from a system dump core file by using the Dump
Viewer.

Writing trace data to a file
You can write trace data to a file continuously as an extension to the in-storage
trace, but, instead of one buffer per thread, at least two buffers per thread are
allocated, and the data is written to the file before wrapping can occur.

This allocation allows the thread to continue to run while a full trace buffer is
written to disk. Depending on trace volume, buffer size, and the bandwidth of the
output device, multiple buffers might be allocated to a given thread to keep pace
with trace data that is being generated.

A thread is never stopped to allow trace buffers to be written. If the rate of trace
data generation greatly exceeds the speed of the output device, excessive memory
usage might occur and cause out-of-memory conditions. To prevent this, use the
nodynamic option of the buffers trace option. For long-running trace runs, a wrap
option is available to limit the file to a given size. It is also possible to create a
sequence of files when the trace output will move back to the first file once the
sequence of files are full. See the output option for details. You must use the trace
formatter to format trace data from the file.

Because trace data is buffered, if the JVM does not exit normally, residual trace
buffers might not be flushed to the file. If the JVM encounters a fatal error, the
buffers can be extracted from a system dump if that is available. When a snap file
is created, all available buffers are always written to it.

External tracing
You can route trace to an agent by using JVMRI TraceRegister.

Chapter 8. Using diagnostic tools 121

This mechanism allows a callback routine to be called immediately when any of
the selected tracepoints is found without buffering the trace results. The trace data
is in raw binary form. Further details can be found in the JVMRI section.

Tracing to stderr
For lower volume or non-performance-critical tracing, the trace data can be
formatted and routed to stderr immediately without buffering.

For more information, see “Using method trace” on page 144.

Trace combinations
Most forms of trace can be combined, with the same or different trace data going
to different destinations.

The exception to this is in-memory trace and trace to a file, which are mutually
exclusive. When an ouput file is specified, any trace data that wraps in the
in-memory case will be written to the file, and a new buffer given to the thread
that filled its buffer. Without an output file specified, when a threads buffer is full,
it wraps its trace data back to the beginning of its buffer.

Controlling the trace
You have several ways by which you can control the trace.

You can control the trace in several ways by using:
v The -Xtrace options when launching the JVM, including trace trigger events
v A trace properties file
v com.ibm.jvm.Trace API
v JVMTI and JVMRI from an external agent

Note:

1. The specification of trace options is cumulative. Multiple -Xtrace options are
accepted on the command line and they are processed left to right order. Each
one adds to the options set by the previous one (and to the default options), as
if they had all been specified in one long comma-separated list in a single
option. This cumulative specification is consistent with the related -Xdump
option processing.

2. By default, trace options equivalent to the following are enabled:
-Xtrace:maximal=all{level1},exception=j9mm{gclogger}

3. To disable the defaults (or any previous -Xtrace options), The -Xtrace keyword
none also allows individual tracepoints or groups of tracepoints to be specified,
like the other keywords. none is used in the same way to disable a set of
tracepoints as maximal, minimal and the other options. However, instead of
setting the maximal bit for a tracepoint, it will clear all previously set bits for
that tracepoint. Thus -Xtrace:none=all

4. Many diagnostic tools start a JVM. When using the IBM_JAVA_OPTIONS
environment variable trace to a file, starting a diagnostic tool might overwrite
the trace data generated from your application. Use the command-line tracing
options or add %d, %p or %t to the trace file name to prevent this from
happening. See “Detailed descriptions of trace options” on page 123 for the
appropriate trace option description.

122 WebSphere Real Time V2 for Linux: User Guide

Specifying trace options
The preferred way to control trace is through trace options that you specify either
by using the -Xtrace option on the launcher command line. You can also use the
IBM_JAVA_OPTIONS environment variable.

Some trace options have the form <name> and others are of the form
<name>=<value>, where <name> is case-sensitive. Except where stated, <value> is not
case-sensitive; the exceptions to this rule are filenames on some platforms, class
names, and method names.

If an option value contains commas, it must be enclosed in braces. For example,
methods={java/lang/*,com/ibm/*}

Note that this applies only to options specified on the command line - not those
specified in a properties file.

The syntax for specifying trace options depends on the launcher. Usually, it is:
java -Xgcpolicy:metronome -Xtrace:<name>,<another_name>=<value> HelloWorld

To switch off all tracepoints, use this option:
java -Xgcpolicy:metronome -Xtrace:none=all

If you specify other tracepoints without specifying -Xtrace:none, the tracepoints are
added to the default set.

When you use the IBM_JAVA_OPTIONS environment variable, use this syntax:
set IBM_JAVA_OPTIONS=-Xtrace:<name>,<another_name>=<value>

or
export IBM_JAVA_OPTIONS=-Xtrace:<name>,<another_name>=<value>

If you use UNIX style shells, note that unwanted shell expansion might occur
because of the characters used in the trace options. To avoid unpredictable results,
enclose this command-line option in quotation marks. For example:
java -Xgcpolicy:metronome "-Xtrace:<name>,<another_name>=<value>" HelloWorld

For more information, see the manual for your shell.

Detailed descriptions of trace options
The options are processed in the sequence in which they are described here.

-Xtrace command-line option syntax

Chapter 8. Using diagnostic tools 123

�� -Xtrace: �

�

�

�

,

properties[=<filename>]
buffers=<size>[, dynamic]

nodynamic
,

minimal = <tracepoint_specification>
maximal
count
print
iprint
exception
external
none

,

method= <method_specification>
output=<filename>[,<size>[,<generations>]]
exception.output=<filename>[,<size>]
resume
resumecount=<count>
sleeptime=nnn|aaams|bbbs
stackdepth=<n>
suspend
suspendcount=<count>

,

trigger= <clause>

��

properties[=<filename>]:

You can use properties files to control trace. A properties file saves typing and,
over time, causes a library of these files to be created. Each file is tailored to
solving problems in a particular area.

This trace option allows you to specify in a file any of the other trace options,
thereby reducing the length of the invocation command-line. The format of the file
is a flat ASCII file that contains trace options. If <filename> is not specified, a
default name of IBMTRACE.properties is searched for in the current directory.
Nesting is not supported; that is, the file cannot contain a properties option. If
any error is found when the file is accessed, JVM initialization fails with an
explanatory error message and return code. All the options that are in the file are
processed in the sequence in which they are stored in the file, before the next
option that is obtained through the normal mechanism is processed. Therefore, a
command-line property always overrides a property that is in the file.

An existing restriction means that properties that take the form <name>=<value>
cannot be left to default if they are specified in the property file; that is, you must
specify a value, for example maximal=all.

Another restriction means that properties files are sensitive to white space. Do not
add white space before, after, or within the trace options.

You can make comments as follows:
// This is a comment. Note that it starts in column 1

124 WebSphere Real Time V2 for Linux: User Guide

Examples

v Use IBMTRACE.properties in the current directory:
-Xtrace:properties

– Use trace.prop in the current directory:
-Xtrace:properties=trace.prop

– Use c:\trc\gc\trace.props:
-Xtrace:properties=c:\trc\gc\trace.props

Here is an example property file:
minimal=all
// maximal=j9mm
maximal=j9shr
buffers=20k
output=c:\traces\classloader.trc
print=tpnid(j9vm.23-25)

buffers=dynamic|nodynamic:

You can specify how buffers are allocated when sending trace data to an output
file.

From Java 6 SR 5, you can specify how buffers are allocated, without needing to
specify the buffer size.

For more information about this option, see:
“buffers=nnnk|nnnm[,dynamic|nodynamic]”

buffers=nnnk|nnnm[,dynamic|nodynamic]:

You can modify the size of the buffers to change how much diagnostics output is
provided in a snap dump. This buffer is allocated for each thread that makes trace
entries.

From Java 6 SR 5, you do not need to specify the buffer size.

If external trace is enabled, the number of buffers is doubled; that is, each thread
allocates two or more buffers. The same buffer size is used for state and exception
tracing, but, in this case, buffers are allocated globally. The default is 8 KB per
thread.

The dynamic and nodynamic options have meaning only when tracing to an
output file. If dynamic is specified, buffers are allocated as needed to match the
rate of trace data generation to the output media. Conversely, if nodynamic is
specified, a maximum of two buffers per thread is allocated. The default is
dynamic. The dynamic option is effective only when you are tracing to an output
file.

Note: If nodynamic is specified, you might lose trace data if the volume of trace
data that is produced exceeds the bandwidth of the trace output file. Message
UTE115 is issued when the first trace entry is lost, and message UTE018 is issued at
JVM termination.

Examples

v Dynamic buffering with increased buffer size of 2 MB per thread:
-Xtrace:buffers=2m

Chapter 8. Using diagnostic tools 125

or in a properties file:
buffers=2m

v Trace buffers limited to two buffers per thread, each of 128 KB:
-Xtrace:buffers={128k,nodynamic}

or in a properties file:
buffers=128k,nodynamic

v Trace using default buffer size of 8 KB, limited to two buffers per thread (Java 6
SR 5 or later):
-Xtrace:buffers=nodynamic

or in a properties file:
buffers=nodynamic

Options that control tracepoint activation:

These options control which individual tracepoints are activated at runtime and the
implicit destination of the trace data.

In some cases, you must use them with other options. For example, if you specify
maximal or minimal tracepoints, the trace data is put into memory buffers. If you
are going to send the data to a file, you must use an output option to specify the
destination filename.

minimal=[!]<tracepoint_specification>[,...]
maximal=[!]<tracepoint_specification>[,...]
count=[!]<tracepoint_specification>[,...]
print=[!]<tracepoint_specification>[,...]
iprint=[!]<tracepoint_specification>[,...]
exception=[!]<tracepoint_specification>[,...]
external=[!]<tracepoint_specification>[,...]
none[=<tracepoint_specification>[,...]]

Note that all these properties are independent of each other and can be mixed and
matched in any way that you choose.

From WebSphere Real Time V2 SR3, you must provide at least one tracepoint
specification when using the minimal, maximal, count, print, iprint, exception
and external options. In some older versions of the SDK the tracepoint
specification defaults to 'all'.

Multiple statements of each type of trace are allowed and their effect is cumulative.
To do this, you must use a trace properties file for multiple trace options of the
same name.

minimal and maximal
minimal and maximal trace data is placed into internal trace buffers that can
then be written to a snap file or written to the files that are specified in an
output trace option. The minimal option records only the timestamp and
tracepoint identifier. When the trace is formatted, missing trace data is replaced
with the characters “???” in the output file. The maximal option specifies that
all associated data is traced. If a tracepoint is activated by both trace options,
maximal trace data is produced. Note that these types of trace are completely
independent from any types that follow them. For example, if the minimal
option is specified, it does not affect a later option such as print.

126 WebSphere Real Time V2 for Linux: User Guide

count
The count option requests that only a count of the selected tracepoints is kept.
At JVM termination, all non-zero totals of tracepoints (sorted by tracepoint id)
are written to a file, called utTrcCounters, in the current directory. This
information is useful if you want to determine the overhead of particular
tracepoints, but do not want to produce a large amount (GB) of trace data.

For example, to count the tracepoints used in the default trace configuration,
use the following:
-Xtrace:count=all{level1},count=j9mm{gclogger}

print
The print option causes the specified tracepoints to be routed to stderr in
real-time. The JVM tracepoints are formatted using J9TraceFormat.dat. The
class library tracepoints are formatted by TraceFormat.dat. J9TraceFormat.dat
and TraceFormat.dat are shipped in sdk/jre/lib and are automatically found
by the runtime.

iprint
The iprint option is the same as the print option, but uses indenting to format
the trace.

exception
When exception trace is enabled, the trace data is collected in internal buffers
that are separate from the normal buffers. These internal buffers can then be
written to a snap file or written to the file that is specified in an
exception.output option.

The exception option allows low-volume tracing in buffers and files that are
distinct from the higher-volume information that minimal and maximal
tracing have provided. In most cases, this information is exception-type data,
but you can use this option to capture any trace data that you want.

This form of tracing is channeled through a single set of buffers, as opposed to
the buffer-per-thread approach for normal trace, and buffer contention might
occur if high volumes of trace data are collected. A difference exists in the
<tracepoint_specification> defaults for exception tracing; see “Tracepoint
specification” on page 128.

Note: The exception trace buffers are intended for low-volume tracing. By
default, the exception trace buffers log garbage collection event tracepoints, see
“Default tracing” on page 119. You can send additional tracepoints to the
exception buffers or switch off the garbage collection tracepoints. Changing the
exception trace buffers will alter the contents of the GC History section in any
Javadumps.

Note: When exception trace is entered for an active tracepoint, the current
thread id is checked against the previous caller's thread id. If it is a different
thread, or this is the first call to exception trace, a context tracepoint is put into
the trace buffer first. This context tracepoint consists only of the current thread
id. This is necessary because of the single set of buffers for exception trace.
(The formatter identifies all trace entries as coming from the "Exception trace
pseudo thread" when it formats exception trace files.)

external
The external option channels trace data to registered trace listeners in
real-time. JVMRI is used to register or deregister as a trace listener. If no
listeners are registered, this form of trace does nothing except waste machine
cycles on each activated tracepoint.

Chapter 8. Using diagnostic tools 127

none

-Xtrace:none prevents the trace engine from loading if it is the only trace
option specified. However, if other -Xtrace options are on the command line, it
is treated as the equivalent of -Xtrace:none=all and the trace engine will still
be loaded.

If you specify other tracepoints without specifying -Xtrace:none, the
tracepoints are added to the default set.

Examples

v Default options applied:
java -Xgcpolicy:metronome

v No effect apart from ensuring that the trace engine is loaded (which is the
default behavior):
java -Xgcpolicy:metronome -Xtrace

v Trace engine is not loaded:
java -Xgcpolicy:metronome -Xtrace:none

v Trace engine is loaded, but no tracepoints are captured:
java -Xgcpolicy:metronome -Xtrace:none=all

v Default options applied, with the addition of printing for j9vm.209
java -Xgcpolicy:metronome -Xtrace:iprint=j9vm.209

v Default options applied, with the addition of printing for j9vm.209 and j9vm.210.
Note the use of brackets when specifying multiple tracepoints.
java -Xtrace:iprint={j9vm.209,j9vm.210}

v Printing for j9vm.209 only:
java -Xgcpolicy:metronome -Xtrace:none -Xtrace:iprint=j9vm.209

v Printing for j9vm.209 only:
java -Xgcpolicy:metronome -Xtrace:none,iprint=j9vm.209

v Default tracing for all components except j9vm, with printing for j9vm.209:
java -Xgcpolicy:metronome -Xtrace:none=j9vm,iprint=j9vm.209

v Default tracing for all components except j9vm, with printing for j9vm.209
java -Xgcpolicy:metronome -Xtrace:none=j9vm -Xtrace:iprint=j9vm.209

v No tracing for j9vm (none overrides iprint):
java -Xgcpolicy:metronome -Xtrace:iprint=j9vm.209,none=j9vm

Tracepoint specification:

You enable tracepoints by specifying component and tracepoint.

If no qualifier parameters are entered, all tracepoints are enabled, except for
exception.output trace, where the default is all {exception}.

The <tracepoint_specification> is as follows:
[!]<component>[{<type>}] or [!]<tracepoint_id>[,...]

where:
! is a logical not. That is, the tracepoints that are specified immediately

following the ! are turned off.
<component>

is one of:
v all

128 WebSphere Real Time V2 for Linux: User Guide

v The JVM subcomponent (that is, dg, j9trc, j9vm, j9mm, j9bcu, j9vrb, j9shr,
j9prt, java,awt, awt_dnd_datatransfer, audio, mt, fontmanager, net,
awt_java2d, awt_print, or nio)

<type> is the tracepoint type or group. The following types are supported:
v Entry
v Exit
v Event
v Exception
v Mem
v A group of tracepoints that have been specified by use of a group name.

For example, nativeMethods select the group of tracepoints in MT
(Method Trace) that relate to native methods. The following groups are
supported:
– compiledMethods
– nativeMethods
– staticMethods

<tracepoint_id>
is the tracepoint identifier. This constitutes the component name of the
tracepoint, followed by its integer number inside that component. For
example, j9mm.49, j9shr.20-29, j9vm.15, To understand these numbers, see
“Determining the tracepoint ID of a tracepoint” on page 140.

Some tracepoints can be both an exit and an exception; that is, the function ended
with an error. If you specify either exit or exception, these tracepoints will be
included.

The following tracepoint specification used in Java 5.0 and earlier IBM SDKs is still
supported:
[!]tpnid{<tracepoint_id>[,...]}

Examples

v All tracepoints:
-Xtrace:maximal

v All tracepoints except j9vrb and j9trc:
-Xtrace:minimal={all,!j9vrb,!j9trc}

v All entry and exit tracepoints in j9bcu:
-Xtrace:maximal={j9bcu{entry},j9bcu{exit}}

v All tracepoints in j9mm except tracepoints 20-30:
-Xtrace:maximal=j9mm,maximal=!j9mm.20-30

v Tracepoints j9prt.5 through j9prt.15:
-Xtrace:print=j9prt.5-15

v All j9trc tracepoints:
-Xtrace:count=j9trc

v All entry and exit tracepoints:
-Xtrace:external={all{entry},all{exit}}

v All exception tracepoints:
-Xtrace:exception

or
-Xtrace:exception=all{exception}

v All exception tracepoints in j9bcu:
-Xtrace:exception=j9bcu

v Tracepoints j9prt.15 and j9shr.12:

Chapter 8. Using diagnostic tools 129

-Xtrace:exception={j9prt.15,j9shr.12}

Trace levels:

Tracepoints have been assigned levels 0 through 9 that are based on the
importance of the tracepoint.

A level 0 tracepoint is very important and is reserved for extraordinary events and
errors; a level 9 tracepoint is in-depth component detail. To specify a given level of
tracing, the level0 through level9 keywords are used. You can abbreviate these
keywords to l0 through l9. For example, if level5 is selected, all tracepoints that
have levels 0 through 5 are included. Level specifications do not apply to explicit
tracepoint specifications that use the TPNID keyword.

The level is provided as a modifier to a component specification, for example:
-Xtrace:maximal={all{level5}}

or
-Xtrace:maximal={j9mm{L2},j9trc,j9bcu{level9},all{level1}}

In the first example, tracepoints that have a level of 5 or below are enabled for all
components. In the second example, all level 1 tracepoints are enabled, as well as
all level2 tracepoints in j9mm, and all tracepoints up to level 9 are enabled in
j9bcu. Note that the level applies only to the current component, therefore, if
multiple trace selection components are found in a trace properties file, the level is
reset to the default for each new component.

Level specifications do not apply to explicit tracepoint specifications that use the
TPNID keyword.

When the not operator is specified, the level is inverted; that is, !j9mm{level5}
disables all tracepoints of level 6 or above for the j9mm component. For example:
-Xtrace:print={all,!j9trc{l5},!j9mm{l6}}

enables trace for all components at level 9 (the default), but disables level 6 and
above for the locking component, and level 7 and above for the storage
component.

Examples

v Count all level zero and one tracepoints hit:
-Xtrace:count=all{L1}

v Produce maximal trace of all components at level 5 and j9mm at level 9:
-Xtrace:maximal={all{level5},j9mm{L9}}

v Trace all components at level 6, but do not trace j9vrb at all, and do not trace the
entry and exit tracepoints in the j9trc component:
-Xtrace:minimal={all{l6},!j9vrb,!j9trc{entry},!j9trc{exit}}

method=<method_specification>[,<method_specification>]:

Using method trace provides a complete (and potentially large) diagnosis of code
paths inside your application and the system classes. Use wild cards and filtering
to control method trace so that you can focus on the sections of code that interest
you.

130 WebSphere Real Time V2 for Linux: User Guide

Method trace can trace:
v Method entry
v Method exit

The methods parameter is defined as:

�� �

,

methods= { [!] * . * }
[*][<package>/]<class>[*] [*]<method>[*]

[()]

��

Where:
v The delimiter between parts of the package name is a forward slash, “/”.
v The ! in the methods parameter is a NOT operator that allows you to tell the

JVM not to trace the specified method or methods.
v The parentheses, (), define whether or not to include method parameters in the

trace.
v If a method specification includes any commas, the whole specification must be

enclosed in braces, for example:
-Xtrace:methods={java/lang/*,java/util/*},print=mt

v It might be necessary to enclose your command line in quotation marks to
prevent the shell intercepting and fragmenting comma-separated command lines,
for example:
"-Xtrace:methods={java/lang/*,java/util/*},print=mt"

To output all method trace information to stderr, use:

-Xtrace:print=mt,methods=*.*
Print method trace information for all methods to stderr.

-Xtrace:iprint=mt,methods=*.*
Print method trace information for all methods to stderr using indentation.

To output method trace information in binary format, see
“output=<filename>[,sizem[,<generations>]]” on page 133.

Examples

v Tracing entry and exit of all methods in a given class:
-Xtrace:methods={ReaderMain.*,java/lang/String.*},print=mt

This traces all method entry and exit of the ReaderMain class in the default
package and the java.lang.String class.

v Tracing entry, exit and input parameters of all methods in a class:
-Xtrace:methods=ReaderMain.*(),print=mt

This traces all method entry, exit, and input of the ReaderMain class in the
default package.

v Tracing all methods in a given package:
-Xtrace:methods=com/ibm/socket/*.*(),print=mt

This traces all method entry, exit, and input of all classes in the package
com.ibm.socket.

Chapter 8. Using diagnostic tools 131

v Multiple method trace:
-Xtrace:methods={Widget.*(),common/*},print=mt

This traces all method entry, exit, and input in the Widget class in the default
package and all method entry and exit in the common package.

v Using the ! operator
-Xtrace:methods={ArticleUI.*,!ArticleUI.get*},print=mt

This traces all methods in the ArticleUI class in the default package except those
beginning with “get”.

Example output
java "-Xtrace:methods={java/lang*.*},iprint=mt" HW
10:02:42.281*0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/String.<clinit>()V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method

132 WebSphere Real Time V2 for Linux: User Guide

The output lines comprise of:
v 0x9e900, the current execenv (execution environment). Because every JVM thread

has its own execenv, you can regard execenv as a thread-id. All trace with the
same execenv relates to a single thread.

v The individual tracepoint id in the mt component that collects and emits the
data.

v The remaining fields show whether a method is being entered (>) or exited (<),
followed by details of the method.

output=<filename>[,sizem[,<generations>]]:

Use the output option to send trace data to <filename>. If the file does not already
exist, it is created automatically. If it does already exist, it is overwritten.

Optionally:
v You can limit the file to size MB, at which point it wraps to the beginning. If you

do not limit the file, it grows indefinitely, until limited by disk space.
v If you want the final trace filename to contain today's date, the PID number that

produced the trace, or the time, do one of the following steps as appropriate (see
also the examples at the end of this section).
– To include today's date (in "yyyymmdd" format) in the trace filename, specify

“%d” as part of the <filename>.
– To include the pidnumber of the process that is generating the tracefile,

specify “%p” as part of the <filename>.
– To include the time (in 24-hour hhmmss format) in the trace filename, specify

“%t” as part of the <filename>.
v You can specify generations as a value 2 through 36. These values cause up to 36

files to be used in a round-robin way when each file reaches its size threshold.
When a file needs to be reused, it is overwritten. If generations is specified, the
filename must contain a "#" (hash, pound symbol), which will be substituted
with its generation identifier, the sequence of which is 0 through 9 followed by
A through Z.

Note: When tracing to a file, buffers for each thread are written when the buffer is
full or when the JVM terminates. If a thread has been inactive for a period of time
before JVM termination, what seems to be 'old' trace data is written to the file.
When formatted, it then seems that trace data is missing from the other threads,
but this is an unavoidable side-effect of the buffer-per-thread design. This effect
becomes especially noticeable when you use the generation facility, and format
individual earlier generations.

Examples

v Trace output goes to /u/traces/gc.problem; no size limit:
-Xtrace:output=/u/traces/gc.problem,maximal=j9gc

v Output goes to trace and will wrap at 2 MB:
-Xtrace:output={trace,2m},maximal=j9gc

v Output goes to gc0.trc, gc1.trc, gc2.trc, each 10 MB in size:
-Xtrace:output={gc#.trc,10m,3},maximal=j9gc

v Output filename contains today's date in yyyymmdd format (for example,
traceout.20041025.trc):
-Xtrace:output=traceout.%d.trc,maximal=j9gc

Chapter 8. Using diagnostic tools 133

v Output file contains the number of the process (the PID number) that generated
it (for example, tracefrompid2112.trc):
-Xtrace:output=tracefrompid%p.trc,maximal=j9gc

v Output filename contains the time in hhmmss format (for example,
traceout.080312.trc):
-Xtrace:output=traceout.%t.trc,maximal=j9gc

exception.output=<filename>[,nnnm]:

Use the exception option to redirect exception trace data to <filename>.

If the file does not already exist, it is created automatically. If it does already exist,
it is overwritten. Optionally, you can limit the file to nnn MB, at which point it
wraps nondestructively to the beginning. If you do not limit the file, it grows
indefinitely, until limited by disk space.

Optionally, if you want the final trace filename to contain today's date, the PID
number that produced the trace, or the time, do one of the following steps as
appropriate (see also the examples at the end of this section).
v To include today's date (in “yyyymmdd” format) in the trace filename, specify

“%d” as part of the <filename>.
v To include the pidnumber of the process that is generating the tracefile, specify

“%p”" as part of the <filename>.
v To include the time (in 24-hour hhmmss format) in the trace filename, specify

“%t” as part of the <filename>.

Examples

v Trace output goes to /u/traces/exception.trc. No size limit:
-Xtrace:exception.output=/u/traces/exception.trc,maximal

v Output goes to except and wraps at 2 MB:
-Xtrace:exception.output={except,2m},maximal

v Output filename contains today's date in yyyymmdd format (for example,
traceout.20041025.trc):
-Xtrace:exception.output=traceout.%d.trc,maximal

v Output file contains the number of the process (the PID number) that generated
it (for example, tracefrompid2112.trc):
-Xtrace:exception.output=tracefrompid%p.trc,maximal

v Output filename contains the time in hhmmss format (for example,
traceout.080312.trc):
-Xtrace:exception.output=traceout.%t.trc,maximal

resume:

Resumes tracing globally.

Note that suspend and resume are not recursive. That is, two suspends that are
followed by a single resume cause trace to be resumed.

Example

v Trace resumed (not much use as a startup option):
-Xtrace:resume

134 WebSphere Real Time V2 for Linux: User Guide

resumecount=<count>:

This trace option determines whether tracing is enabled for each thread.

If <count> is greater than zero, each thread initially has its tracing disabled and
must receive <count> resume this action before it starts tracing.

Note: You cannot use resumecount and suspendcount together because they both
set the same internal counter.

This system property is for use with the trigger property. For more information,
see “trigger=<clause>[,<clause>][,<clause>]...” on page 136.

Example

v Start with all tracing turned off. Each thread starts tracing when it has had three
resumethis actions performed on it:
-Xtrace:resumecount=3

sleeptime=nnn|aaams|bbbs:

Specify how long the sleep lasts when using the sleep trigger action.

Purpose

Use this option to determine how long a sleep trigger action lasts. The default
length of time is 30 seconds. If no units are specified, the default time unit is
milliseconds.

Parameters

nnn
Sleep for nnn milliseconds.

aaams
Sleep for aaa milliseconds.

bbbs
Sleep for bbb seconds.

stackdepth=<n>:

Used to limit the amount of stack frame information collected.

Purpose

Use this option to limit the maximum number of stack frames reported by the
jstacktrace trace trigger action. All stack frames are recorded by default.

Parameters

n Record n stack frames

suspend:

Suspends tracing globally (for all threads and all forms of tracing) but leaves
tracepoints activated.

Chapter 8. Using diagnostic tools 135

Example

v Tracing suspended:
-Xtrace:suspend

suspendcount=<count>:

This trace option determines whether tracing is enabled for each thread.

If <count> is greater than zero, each thread initially has its tracing enabled and
must receive <count> suspend this action before it stops tracing.

Note: You cannot use resumecount and suspendcount together because they both
set the same internal counter.

This trace option is for use with the trigger option. For more information, see
“trigger=<clause>[,<clause>][,<clause>]....”

Example

v Start with all tracing turned on. Each thread stops tracing when it has had three
suspendthis actions performed on it:
-Xtrace:suspendcount=3

trigger=<clause>[,<clause>][,<clause>]...:

This trace option determines when various triggered trace actions occur. Supported
actions include turning tracing on and off for all threads, turning tracing on or off
for the current thread, or producing various dumps.

This trace option does not control what is traced. It controls only whether the
information that has been selected by the other trace options is produced as
normal or is blocked.

Each clause of the trigger option can be tpnid{...}, method{...}, or group{...}. You can
specify multiple clauses of the same type if required, but you do not have to
specify all types. The clause types are as follows:

method{<methodspec>[,<entryAction>[,<exitAction>[,<delayCount>[,<matchcount>]]]]}
On entering a method that matches <methodspec>, the specified <entryAction> is
run. On leaving it, perform the specified <exitAction>. If you specify a
<delayCount>, the actions are performed only after a matching <methodspec>
has been entered that many times. If you specify a <matchCount>,
<entryAction> and <exitAction> are performed at most that many times.

group{<groupname>,<action>[,<delayCount>[,<matchcount>]]}
On finding any active tracepoint that is defined as being in trace group
<groupname>, for example Entry or Exit, the specified action is run. If you
specify a <delayCount>, the action is performed only after that many active
tracepoints from group <groupname> have been found. If you specify a
<matchCount>, <action> is performed at most that many times.

tpnid{<tpnid>|<tpnidRange>,<action>[,<delayCount>[,<matchcount>]]}
On finding the specified active <tpnid> (tracepoint ID) or a <tpnid> that falls
inside the specified <tpnidRange>, the specified action is run. If you specify a
<delayCount>, the action is performed only after the JVM finds such an active
<tpnid> that many times. If you specify a <matchCount>, <action> is performed
at most that many times.

136 WebSphere Real Time V2 for Linux: User Guide

Actions

Wherever an action must be specified, you must select from these choices:

abort
Halt the JVM.

coredump
See sysdump.

heapdump
Produce a Heapdump. See “Using Heapdump” on page 98.

javadump
Produce a Javadump. See “Using Javadump” on page 85.

jstacktrace
Walk the Java stack of the current thread and generate auxiliary tracepoints for
each stack frame. The auxiliary tracepoints are written to the same destination
as the tracepoint or method trace that triggered the action. You can control the
number of stack frames walked with the stackdepth=n option. See
“stackdepth=<n>” on page 135. The jstacktrace action is available from Java 6
SR 5.

resume
Resume all tracing (except for threads that are suspended by the action of the
resumecount property and Trace.suspendThis() calls).

resumethis
Decrement the suspend count for this thread. If the suspend count is zero or
below, resume tracing for this thread.

segv
Cause a segmentation violation. (Intended for use in debugging.)

sleep
Delay the current thread for a length of time controlled by the sleeptime
option. The default is 30 seconds. See “sleeptime=nnn|aaams|bbbs” on page
135.

snap
Snap all active trace buffers to a file in the current working directory. The file
name has the format: Snapnnnn.yyyymmdd.hhmmssth.ppppp.trc, where nnnn is
the sequence number of the snap file since JVM startup, yyyymmdd is the date,
hhmmssth is the time, and ppppp is the process ID in decimal with leading zeros
removed.

suspend
Suspend all tracing (except for special trace points).

suspendthis
Increment the suspend count for this thread. If the suspend-count is greater
than zero, prevent all tracing for this thread.

sysdump (or coredump)
Produce a system dump. See “Using system dumps and the dump viewer” on
page 102.

Examples

v To start tracing this thread when it enters any method in java/lang/String, and
to stop tracing the thread after exiting the method:

Chapter 8. Using diagnostic tools 137

-Xtrace:resumecount=1
-Xtrace:trigger=method{java/lang/String.*,resumethis,suspendthis}

v To resume all tracing when any thread enters a method in any class that starts
with “error”:
-Xtrace:trigger=method{*.error*,resume}

v To produce a core dump when you reach the 1000th and 1001st tracepoint from
the “jvmri” trace group.

Note: Without <matchcount>, you risk filling your disk with coredump files.
-Xtrace:trigger=group{staticmethods,coredump,1000,2}

If using the trigger option generates multiple dumps in rapid succession (more
than one per second), specify a dump option to guarantee unique dump names.
See “Using dump agents” on page 71 for more information.

v To trace (all threads) while the application is active; that is, not start up or shut
down. (The application name is “HelloWorld”):
-Xtrace:suspend,trigger=method{HelloWorld.main,resume,suspend}

v To print a Java stack trace to the console when the mycomponent.1 tracepoint is
reached:
-Xtrace:print=mycomponent.1,trigger=tpnid{mycomponent.1,jstacktrace}

v To write a Java stack trace to the trace output file when the Sample.code()
method is called:
-Xtrace:maximal=mt,output=trc.out,methods={mycompany/mypackage/Sample.code},trigger=method{mycompany/mypackage/Sample.code,jstacktrace}

Using the Java API
You can dynamically control trace in a number of ways from a Java application by
using the com.ibm.jvm.Trace class.

Activating and deactivating tracepoints

int set(String cmd);

The Trace.set() method allows a Java application to select tracepoints
dynamically. For example:
Trace.set(“iprint=all”);

The syntax is the same as that used in a trace properties file for the print,
iprint, count, maximal, minimal and external trace options.

A single trace command is parsed per invocation of Trace.set, so to achieve the
equivalent of -Xtrace:maximal=j9mm,iprint=j9shr two calls to Trace.set are
needed with the parameters maximal=j9mm and iprint=j9shr

Obtaining snapshots of trace buffers

void snap();

You must have activated trace previously with the maximal or minimal
options and without the out option.

Suspending or resuming trace

void suspend();

The Trace.suspend() method suspends tracing for all the threads in the JVM.

void resume();

The Trace.resume() method resumes tracing for all threads in the JVM. It is
not recursive.

138 WebSphere Real Time V2 for Linux: User Guide

void suspendThis();

The Trace.suspendThis() method decrements the suspend and resume count for
the current thread and suspends tracing the thread if the result is negative.

void resumeThis();

The Trace.resumeThis() method increments the suspend and resume count for
the current thread and resumes tracing the thread if the result is not negative.

Using the trace formatter
The trace formatter is a Java program that converts binary trace point data in a
trace file to a readable form. The formatter requires the J9TraceFormat.dat file,
which contains the formatting templates. The formatter produces a file containing
header information about the JVM that produced the binary trace file, a list of
threads for which trace points were produced, and the formatted trace points with
their timestamp, thread ID, trace point ID and trace point data.

To use the trace formatter on a binary trace file type:
java com.ibm.jvm.format.TraceFormat -Xgcpolicy:metronome <input_file> [<output_file>] [options]

where <input_file> is the name of the binary trace file to be formatted, and
<output_file> is the name of the output file.

If you do not specify an output file, the output file is called <input_file>.fmt.

The size of the heap needed to format the trace is directly proportional to the
number of threads present in the trace file. For large numbers of threads the
formatter might run out of memory, generating the error OutOfMemoryError. In this
case, increase the heap size using the -Xmx option.

Available options

The following options are available with the trace formatter:

-datdir <directory>
Selects an alternative formatting template file directory. The directory must
contain the J9TraceFormat.dat file.

-help
Displays usage information.

-indent
Indents trace messages at each Entry trace point and outdents trace messages
at each Exit trace point. The default is not to indent the messages.

-overridetimezone <hours>
Add <hours> hours to formatted tracepoints, the value can be negative. This
option allows the user to override the default time zone used in the formatter
(UTC).

-summary
Prints summary information to the screen without generating an output file.

-threads <thread id>[,<thread id>]...
Filters the output for the given thread IDs only. Any number of thread IDs can
be specified, separated by commas.

Chapter 8. Using diagnostic tools 139

-uservmid <string>
Inserts <string> in each formatted tracepoint. The string aids reading or
parsing when several different JVMs or JVM runs are traced for comparison.

Determining the tracepoint ID of a tracepoint
Throughout the code that makes up the JVM, there are numerous tracepoints. Each
tracepoint maps to a unique id consisting of the name of the component containing
the tracepoint, followed by a period (“.”) and then the numeric identifier of the
tracepoint.

These tracepoints are also recorded in two .dat files (TraceFormat.dat and
J9TraceFormat.dat) that are shipped with the JRE and the trace formatter uses
these files to convert compressed trace points into readable form.

JVM developers and Service can use the two .dat files to enable formulation of
trace point ids and ranges for use under -Xtrace when tracking down problems.
The next sample taken from the top of TraceFormat.dat, which illustrates how this
mechanism works:

The first line of the .dat file is an internal version number. Following the version
number is a line for each tracepoint. Trace point j9bcu.0 maps to
Trc_BCU_VMInitStages_Event1 for example and j9bcu.2 maps to
Trc_BCU_internalDefineClass_Exit.

The format of each tracepoint entry is:
<component> <t> <o> <l> <e> <symbol> <template>

where:
<component>

is the SDK component name.
<t> is the tracepoint type (0 through 12), where these types are used:

v 0 = event
v 1 = exception
v 2 = function entry
v 4 = function exit
v 5 = function exit with exception
v 8 = internal
v 12 = assert

<o> is the overhead (0 through 10), which determines whether the tracepoint is
compiled into the runtime JVM code.

<l> is the level of the tracepoint (0 through 9). High frequency tracepoints,
known as hot tracepoints, are assigned higher level numbers.

<e> is an internal flag (Y/N) and no longer used.
<symbol>

is the internal symbolic name of the tracepoint.
<template>

is a template in double quotation marks that is used to format the entry.

For example, if you discover that a problem occurred somewhere close to the issue
of Trc_BCU_VMInitStages_Event, you can rerun the application with
-Xtrace:print=tpnid{j9bcu.0}. That command will result in an output such as:
14:10:42.717*0x41508a00 j9bcu.0 - Trace engine initialized for module j9dyn

140 WebSphere Real Time V2 for Linux: User Guide

The example given is fairly trivial. However, the use of tpnid ranges and the
formatted parameters contained in most trace entries provides a very powerful
problem debugging mechanism.

The .dat files contain a list of all the tracepoints ordered by component, then
sequentially numbered from 0. The full tracepoint id is included in all formatted
output of a tracepoint; For example, tracing to the console or formatted binary
trace.

The format of trace entries and the contents of the .dat files are subject to change
without notice. However, the version number should guarantee a particular format.

Application trace
Application trace allows you to trace Java applications using the JVM Trace
Facility.

You must register your Java application with application trace and add trace calls
where appropriate. After you have started an application trace module, you can
enable or disable individual tracepoints at any time.

Implementing application trace
Application trace is in the package com.ibm.jvm.Trace. The application trace API is
described in this section.

Registering for trace:

Use the registerApplication() method to specify the application to register with
application trace.

The method is of the form:
int registerApplication(String application_name, String[] format_template)

The application_name argument is the name of the application you want to trace.
The name must be the same as the application name you specify at JVM startup.
The format_template argument is an array of format strings like the strings used
by the printf method. You can specify templates of up to 16 KB. The position in the
array determines the tracepoint identifier (starting at 0). You can use these
identifiers to enable specific tracepoints at runtime. The first character of each
template is a digit that identifies the type of tracepoint. The tracepoint type can be
one of entry, exit, event, exception, or exception exit. After the tracepoint type
character, the template has a blank character, followed by the format string.

The trace types are defined as static values within the Trace class:
public static final String EVENT= "0 ";
public static final String EXCEPTION= "1 ";
public static final String ENTRY= "2 ";
public static final String EXIT= "4 ";
public static final String EXCEPTION_EXIT= "5 ";

The registerApplication() method returns an integer value. Use this value in
subsequent trace() calls. If the registerApplication() method call fails for any
reason, the value returned is -1.

Tracepoints:

These trace methods are implemented.

Chapter 8. Using diagnostic tools 141

void trace(int handle, int traceId);
void trace(int handle, int traceId, String s1);
void trace(int handle, int traceId, String s1, String s2);
void trace(int handle, int traceId, String s1, String s2, String s3);
void trace(int handle, int traceId, String s1, Object o1);
void trace(int handle, int traceId, Object o1, String s1);
void trace(int handle, int traceId, String s1, int i1);
void trace(int handle, int traceId, int i1, String s1);
void trace(int handle, int traceId, String s1, long l1);
void trace(int handle, int traceId, long l1, String s1);
void trace(int handle, int traceId, String s1, byte b1);
void trace(int handle, int traceId, byte b1, String s1);
void trace(int handle, int traceId, String s1, char c1);
void trace(int handle, int traceId, char c1, String s1);
void trace(int handle, int traceId, String s1, float f1);
void trace(int handle, int traceId, float f1, String s1);
void trace(int handle, int traceId, String s1, double d1);
void trace(int handle, int traceId, double d1, String s1);
void trace(int handle, int traceId, Object o1);
void trace(int handle, int traceId, Object o1, Object o2);
void trace(int handle, int traceId, int i1);
void trace(int handle, int traceId, int i1, int i2);
void trace(int handle, int traceId, int i1, int i2, int i3);
void trace(int handle, int traceId, long l1);
void trace(int handle, int traceId, long l1, long l2);
void trace(int handle, int traceId, long l1, long l2, long i3);
void trace(int handle, int traceId, byte b1);
void trace(int handle, int traceId, byte b1, byte b2);
void trace(int handle, int traceId, byte b1, byte b2, byte b3);
void trace(int handle, int traceId, char c1);
void trace(int handle, int traceId, char c1, char c2);
void trace(int handle, int traceId, char c1, char c2, char c3);
void trace(int handle, int traceId, float f1);
void trace(int handle, int traceId, float f1, float f2);
void trace(int handle, int traceId, float f1, float f2, float f3);
void trace(int handle, int traceId, double d1);
void trace(int handle, int traceId, double d1, double d2);
void trace(int handle, int traceId, double d1, double d2, double d3);
void trace(int handle, int traceId, String s1, Object o1, String s2);
void trace(int handle, int traceId, Object o1, String s1, Object o2);
void trace(int handle, int traceId, String s1, int i1, String s2);
void trace(int handle, int traceId, int i1, String s1, int i2);
void trace(int handle, int traceId, String s1, long l1, String s2);
void trace(int handle, int traceId, long l1, String s1, long l2);
void trace(int handle, int traceId, String s1, byte b1, String s2);
void trace(int handle, int traceId, byte b1, String s1, byte b2);
void trace(int handle, int traceId, String s1, char c1, String s2);
void trace(int handle, int traceId, char c1, String s1, char c2);
void trace(int handle, int traceId, String s1, float f1, String s2);
void trace(int handle, int traceId, float f1, String s1, float f2);
void trace(int handle, int traceId, String s1, double d1, String s2);
void trace(int handle, int traceId, double d1, String s1, double d2);

The handle argument is the value returned by the registerApplication() method.
The traceId argument is the number of the template entry starting at 0.

142 WebSphere Real Time V2 for Linux: User Guide

Printf specifiers:

Application trace supports the ANSI C printf specifiers. You must be careful when
you select the specifier; otherwise you might get unpredictable results, including
abnormal termination of the JVM.

For 64-bit integers, you must use the ll (lower case LL, meaning long long)
modifier. For example: %lld or %lli.

For pointer-sized integers use the z modifier. For example: %zx or %zd.

Example HelloWorld with application trace:

This code illustrates a “HelloWorld” application with application trace.
import com.ibm.jvm.Trace;
public class HelloWorld
{

static int handle;
static String[] templates;
public static void main (String[] args)
{

templates = new String[5];
templates[0] = Trace.ENTRY + "Entering %s";
templates[1] = Trace.EXIT + "Exiting %s";
templates[2] = Trace.EVENT + "Event id %d, text = %s";
templates[3] = Trace.EXCEPTION + "Exception: %s";
templates[4] = Trace.EXCEPTION_EXIT + "Exception exit from %s";

// Register a trace application called HelloWorld
handle = Trace.registerApplication("HelloWorld", templates);

// Set any tracepoints requested on command line
for (int i = 0; i < args.length; i++)
{

System.err.println("Trace setting: " + args[i]);
Trace.set(args[i]);

}

// Trace something....
Trace.trace(handle, 2, 1, "Trace initialized");

// Call a few methods...
sayHello();
sayGoodbye();

}
private static void sayHello()
{

Trace.trace(handle, 0, "sayHello");
System.out.println("Hello");
Trace.trace(handle, 1, "sayHello");

}

private static void sayGoodbye()
{

Trace.trace(handle, 0, "sayGoodbye");
System.out.println("Bye");
Trace.trace(handle, 4, "sayGoodbye");

}
}

Chapter 8. Using diagnostic tools 143

Using application trace at runtime
At runtime, you can enable one or more applications for application trace.

For example, in the case of the “HelloWorld” application described above:
java -Xgcpolicy:metronome HelloWorld iprint=HelloWorld

The HelloWorld example uses the Trace.set() API to pass any arguments to trace,
enabling all of the HelloWorld tracepoints to be routed to stderr. Starting the
HelloWorld application in this way produces the following output:
Trace setting: iprint=HelloWorld
09:50:29.417*0x2a08a00 084002 - Event id 1, text = Trace initialized
09:50:29.417 0x2a08a00 084000 > Entering sayHello
Hello
09:50:29.427 0x2a08a00 084001 < Exiting sayHello
09:50:29.427 0x2a08a00 084000 > Entering sayGoodbye
Bye
09:50:29.437 0x2a08a00 084004 * < Exception exit from sayGoodbye

You can obtain a similar result by specifying iprint on the command line:
java -Xgcpolicy:metronome -Xtrace:iprint=HelloWorld HelloWorld

See “Options that control tracepoint activation” on page 126 for more details.

Using method trace
Using method trace provides a complete (and potentially large) diagnosis of code
paths inside your application and also inside the system classes. Method trace is a
powerful tool that allows you to trace methods in any Java code.

You do not have to add any hooks or calls to existing code. Use wild cards and
filtering to control method trace so that you can focus on the sections of code that
interest you.

Method trace can trace:
v Method entry
v Method exit

Use method trace to debug and trace application code and the system classes
provided with the JVM.

While method trace is powerful, it also has a cost. Application throughput will be
significantly affected by method trace, proportionally to the number of methods
traced. Additionally, trace output is reasonably large and can grow to consume a
significant amount of drive space. For instance, full method trace of a “Hello
World” application is over 10 MB.

Running with method trace
Control method trace by using the command-line option -Xtrace:<option>.

To produce method trace you need to set trace options for the Java classes and
methods you want to trace. You also need to route the method trace to the
destination you require.

You must set the following two options:
1. Use -Xtrace:methods to select which Java classes and methods you want to

trace.

144 WebSphere Real Time V2 for Linux: User Guide

2. Use either
v -Xtrace:print to route the trace to stderr.
v -Xtrace:maximal and -Xtrace:output to route the trace to a binary compressed

file using memory buffers.

Use the methods parameter to control what is traced. For example, to trace all
methods on the String class, set -Xtrace:methods=java/lang/String.*,print=mt.

The methods parameter is formally defined as follows:
-Xtrace:methods=[[!]<method_spec>[,...]]

Where <method_spec> is formally defined as:
{*|[*]<classname>[*]}.{*|[*]<methodname>[*]}[()]

Note:
v The symbol "!" in the methods parameter is a NOT operator. Use this symbol to

exclude methods from the trace. Use "this" with other methods parameters to set
up a trace of the form: “trace methods of this type but not methods of that
type”.

v The parentheses, (), that are in the <method_spec> define whether to trace method
parameters.

v If a method specification includes any commas, the whole specification must be
enclosed in braces:
-Xtrace:methods={java/lang/*,java/util/*},print=mt

v On Linux, AIX, z/OS, and i5/OS, you might have to enclose your command line
in quotation marks. This action prevents the shell intercepting and fragmenting
comma-separated command lines:
“-Xtrace:methods={java/lang/*,java/util/*},print=mt”

Use the print, maximal and output options to route the trace to the required
destination, where:
v print formats the tracepoint data while the Java application is running and

writes the tracepoints to stderr.
v maximal saves the tracepoints into memory buffers.
v output writes the memory buffers to a file, in a binary compressed format.

To produce method trace that is routed to stderr, use the print option, specifying
mt (method trace). For example: -Xtrace:methods=java/lang/String.*,print=mt.

To produce method trace that is written to a binary file from the memory buffers,
use the maximal and output options. For example: -Xtrace:methods=java/lang/
String.*,maximal=mt,output=mytrace.trc.

If you want your trace output to contain only the tracepoints you specify, use the
option -Xtrace:none to switch off the default tracepoints. For example: java
-Xtrace:none -Xtrace:methods=java/lang/String.*,maximal=mt,output=mytrace.trc
<class>.

Untraceable methods
Internal Native Library (INL) native methods inside the JVM cannot be traced
because they are not implemented using JNI. The list of methods that are not
traceable is subject to change without notice between releases.

Chapter 8. Using diagnostic tools 145

The INL native methods in the JVM include:
java.lang.Class.allocateAndFillArray
java.lang.Class.forNameImpl
java.lang.Class.getClassDepth
java.lang.Class.getClassLoaderImpl
java.lang.Class.getComponentType
java.lang.Class.getConstructorImpl
java.lang.Class.getConstructorsImpl
java.lang.Class.getDeclaredClassesImpl
java.lang.Class.getDeclaredConstructorImpl
java.lang.Class.getDeclaredConstructorsImpl
java.lang.Class.getDeclaredFieldImpl
java.lang.Class.getDeclaredFieldsImpl
java.lang.Class.getDeclaredMethodImpl
java.lang.Class.getDeclaredMethodsImpl
java.lang.Class.getDeclaringClassImpl
java.lang.Class.getEnclosingObject
java.lang.Class.getEnclosingObjectClass
java.lang.Class.getFieldImpl
java.lang.Class.getFieldsImpl
java.lang.Class.getGenericSignature
java.lang.Class.getInterfaceMethodCountImpl
java.lang.Class.getInterfaceMethodsImpl
java.lang.Class.getInterfaces
java.lang.Class.getMethodImpl
java.lang.Class.getModifiersImpl
java.lang.Class.getNameImpl
java.lang.Class.getSimpleNameImpl
java.lang.Class.getStackClass
java.lang.Class.getStackClasses
java.lang.Class.getStaticMethodCountImpl
java.lang.Class.getStaticMethodsImpl
java.lang.Class.getSuperclass
java.lang.Class.getVirtualMethodCountImpl
java.lang.Class.getVirtualMethodsImpl
java.lang.Class.isArray
java.lang.Class.isAssignableFrom
java.lang.Class.isInstance
java.lang.Class.isPrimitive
java.lang.Class.newInstanceImpl
java.lang.ClassLoader.findLoadedClassImpl
java.lang.ClassLoader.getStackClassLoader
java.lang.ClassLoader.loadLibraryWithPath
java.lang.J9VMInternals.getInitStatus
java.lang.J9VMInternals.getInitThread
java.lang.J9VMInternals.initializeImpl
java.lang.J9VMInternals.sendClassPrepareEvent
java.lang.J9VMInternals.setInitStatusImpl
java.lang.J9VMInternals.setInitThread
java.lang.J9VMInternals.verifyImpl
java.lang.J9VMInternals.getStackTrace
java.lang.Object.clone
java.lang.Object.getClass
java.lang.Object.hashCode
java.lang.Object.notify
java.lang.Object.notifyAll
java.lang.Object.wait
java.lang.ref.Finalizer.runAllFinalizersImpl
java.lang.ref.Finalizer.runFinalizationImpl
java.lang.ref.Reference.getImpl
java.lang.ref.Reference.initReferenceImpl
java.lang.reflect.AccessibleObject.checkAccessibility
java.lang.reflect.AccessibleObject.getAccessibleImpl
java.lang.reflect.AccessibleObject.getExceptionTypesImpl
java.lang.reflect.AccessibleObject.getModifiersImpl
java.lang.reflect.AccessibleObject.getParameterTypesImpl
java.lang.reflect.AccessibleObject.getSignature

146 WebSphere Real Time V2 for Linux: User Guide

java.lang.reflect.AccessibleObject.getStackClass
java.lang.reflect.AccessibleObject.initializeClass
java.lang.reflect.AccessibleObject.invokeImpl
java.lang.reflect.AccessibleObject.setAccessibleImpl
java.lang.reflect.Array.get
java.lang.reflect.Array.getBoolean
java.lang.reflect.Array.getByte
java.lang.reflect.Array.getChar
java.lang.reflect.Array.getDouble
java.lang.reflect.Array.getFloat
java.lang.reflect.Array.getInt
java.lang.reflect.Array.getLength
java.lang.reflect.Array.getLong
java.lang.reflect.Array.getShort
java.lang.reflect.Array.multiNewArrayImpl
java.lang.reflect.Array.newArrayImpl
java.lang.reflect.Array.set
java.lang.reflect.Array.setBoolean
java.lang.reflect.Array.setByte
java.lang.reflect.Array.setChar
java.lang.reflect.Array.setDouble
java.lang.reflect.Array.setFloat
java.lang.reflect.Array.setImpl
java.lang.reflect.Array.setInt
java.lang.reflect.Array.setLong
java.lang.reflect.Array.setShort
java.lang.reflect.Constructor.newInstanceImpl
java.lang.reflect.Field.getBooleanImpl
java.lang.reflect.Field.getByteImpl
java.lang.reflect.Field.getCharImpl
java.lang.reflect.Field.getDoubleImpl
java.lang.reflect.Field.getFloatImpl
java.lang.reflect.Field.getImpl
java.lang.reflect.Field.getIntImpl
java.lang.reflect.Field.getLongImpl
java.lang.reflect.Field.getModifiersImpl
java.lang.reflect.Field.getNameImpl
java.lang.reflect.Field.getShortImpl
java.lang.reflect.Field.getSignature
java.lang.reflect.Field.getTypeImpl
java.lang.reflect.Field.setBooleanImpl
java.lang.reflect.Field.setByteImpl
java.lang.reflect.Field.setCharImpl
java.lang.reflect.Field.setDoubleImpl
java.lang.reflect.Field.setFloatImpl
java.lang.reflect.Field.setImpl
java.lang.reflect.Field.setIntImpl
java.lang.reflect.Field.setLongImpl
java.lang.reflect.Field.setShortImpl
java.lang.reflect.Method.getNameImpl
java.lang.reflect.Method.getReturnTypeImpl
java.lang.String.intern
java.lang.String.isResettableJVM0
java.lang.System.arraycopy
java.lang.System.currentTimeMillis
java.lang.System.hiresClockImpl
java.lang.System.hiresFrequencyImpl
java.lang.System.identityHashCode
java.lang.System.nanoTime
java.lang.Thread.currentThread
java.lang.Thread.getStackTraceImpl
java.lang.Thread.holdsLock
java.lang.Thread.interrupted
java.lang.Thread.interruptImpl
java.lang.Thread.isInterruptedImpl
java.lang.Thread.resumeImpl
java.lang.Thread.sleep

Chapter 8. Using diagnostic tools 147

java.lang.Thread.startImpl
java.lang.Thread.stopImpl
java.lang.Thread.suspendImpl
java.lang.Thread.yield
java.lang.Throwable.fillInStackTrace
java.security.AccessController.getAccessControlContext
java.security.AccessController.getProtectionDomains
java.security.AccessController.getProtectionDomainsImpl
org.apache.harmony.kernel.vm.VM.getStackClassLoader
org.apache.harmony.kernel.vm.VM.internImpl

Examples of use
Here are some examples of method trace commands and their results.
v Tracing entry and exit of all methods in a given class:

-Xtrace:methods=java/lang/String.*,print=mt

This example traces entry and exit of all methods in the java.lang.String class.
The name of the class must include the full package name, using '/' as a
separator. The method name is separated from the class name by a dot '.' In this
example, '*' is used to include all methods. Sample output:
09:39:05.569 0x1a1100 mt.0 > java/lang/String.length()I Bytecode method, This = 8b27d8
09:39:05.579 0x1a1100 mt.6 < java/lang/String.length()I Bytecode method

v Tracing method input parameters:
-Xtrace:methods=java/lang/Thread.*(),print=mt

This example traces all methods in the java.lang.Thread class, with the
parentheses '()' indicating that the trace should also include the method call
parameters. The output includes an extra line, giving the class and location of
the object on which the method was called, and the values of the parameters. In
this example the method call is Thread.join(long millis,int nanos), which has two
parameters:
09:58:12.949 0x4236ce00 mt.0 > java/lang/Thread.join(JI)V Bytecode method, This = 8ffd20
09:58:12.959 0x4236ce00 mt.18 - Instance method receiver: com/ibm/tools/attach/javaSE/AttachHandler@008FFD20
arguments: ((long)1000,(int)0)

v Tracing multiple methods:
-Xtrace:methods={java/util/HashMap.size,java/lang/String.length},print=mt

This example traces the size method on the java.util.HashMap class and the
length method on the java.lang.String class. The method specification includes
the two methods separated by a comma, with the entire method specification
enclosed in braces '{' and '}'. Sample output:
10:28:19.296 0x1a1100 mt.0 > java/lang/String.length()I Bytecode method, This = 8c2548
10:28:19.306 0x1a1100 mt.6 < java/lang/String.length()I Bytecode method
10:28:19.316 0x1a1100 mt.0 > java/util/HashMap.size()I Bytecode method, This = 8dd7e8
10:28:19.326 0x1a1100 mt.6 < java/util/HashMap.size()I Bytecode method

v Using the ! (not) operator to select tracepoints:
-Xtrace:methods={java/util/HashMap.*,!java/util/HashMap.put*},print

This example traces all methods in the java.util.HashMap class except those
beginning with put. Sample output:
10:37:42.225 0x1a1100 mt.0 > java/util/HashMap.createHashedEntry(Ljava/lang/Object;II)Ljava/util/HashMap$Entry; Bytecode method, This = 8e09
e0
10:37:42.246 0x1a1100 mt.6 < java/util/HashMap.createHashedEntry(Ljava/lang/Object;II)Ljava/util/HashMap$Entry; Bytecode method
10:37:42.256 0x1a1100 mt.1 > java/util/HashMap.findNonNullKeyEntry(Ljava/lang/Object;II)Ljava/util/HashMap$Entry; Compiled method, This = 8d
d7e0
10:37:42.266 0x1a1100 mt.7 < java/util/HashMap.findNonNullKeyEntry(Ljava/lang/Object;II)Ljava/util/HashMap$Entry; Compiled method

148 WebSphere Real Time V2 for Linux: User Guide

Example of method trace output
An example of method trace output.

Sample output using the command java -Xtrace:iprint=mt,methods=java/lang/
. -version:

10:02:42.281*0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)
V Compiled static method

10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)
V Compiled static method

10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)
V Compiled static method

10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)
V Compiled static method

10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)
V Compiled static method

10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)
V Compiled static method

10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)
V Compiled static method

10:02:42.296 0x9e900 mt.4 > java/lang/String.<clinit>()V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method

The output lines comprise:
v 0x9e900, the current execenv (execution environment). Because every JVM thread

has its own execenv, you can regard execenv as a thread-id. All trace with the
same execenv relates to a single thread.

v The individual tracepoint id in the mt component that collects and emits the
data.

Chapter 8. Using diagnostic tools 149

v The remaining fields show whether a method is being entered (>) or exited (<),
followed by details of the method.

JIT and AOT problem determination
You can use command-line options to help diagnose JIT and AOT compiler
problems and to tune performance.
Related information

“JIT compilation and performance” on page 48
The JIT is another area that can affect the performance of your program. When
deciding whether or not to use JIT compilation, you must make a balance between
faster execution and increased processor usage during compilation. When using the
JIT, you should consider the implications to real-time behavior.

Diagnosing a JIT or AOT problem
Occasionally, valid bytecodes might compile into invalid native code, causing the
Java program to fail. By determining whether the JIT or AOT compiler is faulty
and, if so, where it is faulty, you can provide valuable help to the Java service team.

About this task

This section describes how you can determine if your problem is compiler-related.
This section also suggests some possible workarounds and debugging techniques
for solving compiler-related problems.

Disabling the JIT or AOT compiler
If you suspect that a problem is occurring in the JIT or AOT compiler, disable
compilation to see if the problem remains. If the problem still occurs, you know
that the compiler is not the cause of it.

About this task

The JIT compiler is enabled by default. The AOT compiler is also enabled, but, is
not active unless shared classes have been enabled. For efficiency reasons, not all
methods in a Java application are compiled. The JVM maintains a call count for
each method in the application; every time a method is called and interpreted, the
call count for that method is incremented. When the count reaches the compilation
threshold, the method is compiled and executed natively.

The call count mechanism spreads compilation of methods throughout the life of
an application, giving higher priority to methods that are used most frequently.
Some infrequently used methods might never be compiled at all. As a result, when
a Java program fails, the problem might be in the JIT or AOT compiler or it might
be elsewhere in the JVM.

The first step in diagnosing the failure is to determine where the problem is. To do
this, you must first run your Java program in purely interpreted mode (that is,
with the JIT and AOT compilers disabled).

Procedure
1. Remove any -Xjit and -Xaot options (and accompanying parameters) from your

command line.
2. Use the -Xint command-line option to disable the JIT and AOT compilers. For

performance reasons, do not use the -Xint option in a production environment.

150 WebSphere Real Time V2 for Linux: User Guide

What to do next

Running the Java program with the compilation disabled leads to one of the
following:
v The failure remains. The problem is not in the JIT or AOT compiler. In some

cases, the program might start failing in a different manner; nevertheless, the
problem is not related to the compiler.

v The failure disappears. The problem is most likely in the JIT or AOT compiler.
If you are not using shared classes, the JIT compiler is at fault. If you are using
shared classes, you must determine which compiler is at fault by running your
application with only JIT compilation enabled. Run your application with the
-Xnoaot option instead of the -Xint option. This leads to one of the following:
– The failure remains. The problem is in the JIT compiler. You can also use the

-Xnojit instead of the -Xnoaot option to ensure that only the JIT compiler is at
fault.

– The failure disappears. The problem is in the AOT compiler.

Selectively disabling the JIT compiler
If the failure of your Java program appears to come from a problem with the JIT
compiler, you can try to narrow down the problem further.

About this task

By default, the JIT compiler optimizes methods at various optimization levels; that
is, different selections of optimizations are applied to different methods, based on
their call counts. Methods that are called more frequently are optimized at higher
levels. By changing JIT compiler parameters, you can control the optimization level
at which methods are optimized, and determine whether the optimizer is at fault
and, if it is, which optimization is problematic.

You specify JIT parameters as a comma-separated list, appended to the -Xjit
option. The syntax is -Xjit:<param1>,<param2>=<value>. For example:
java -Xjit:verbose,optLevel=noOpt HelloWorld

runs the HelloWorld program, enables verbose output from the JIT, and makes the
JIT generate native code without performing any optimizations.

Follow these steps to determine which part of the compiler is causing the failure:

Procedure
1. Set the JIT parameter count=0 to change the compilation threshold to zero. This

causes each Java method to be compiled before it is run. Use count=0 only
when diagnosing problems because significantly more rarely-called methods are
compiled, which uses more computing resources for compilation, slowing
down your application. With count=0, your application should fail immediately
when the problem area is reached. In some cases, using count=1 can reproduce
the failure more reliably.

2. Add disableInlining to the JIT compiler parameters. disableInlining disables
the generation of larger and more complex code. More aggressive optimizations
are not performed. If the problem no longer occurs, use -Xjit:disableInlining as
a workaround while the Java service team analyzes and fixes the compiler
problem.

3. Decrease the optimization levels by adding the optLevel parameter, and re-run
the program until the failure no longer occurs or you reach the “noOpt” level.

Chapter 8. Using diagnostic tools 151

For a JIT compiler problem, start with “scorching” and work down the list. The
optimization levels are, in decreasing order:
a. scorching
b. veryHot
c. hot
d. warm
e. cold
f. noOpt

What to do next

If one of these settings causes your failure to disappear, you have a workaround
that you can use while the Java service team analyzes and fixes the compiler
problem. If removing disableInlining from the JIT parameter list does not cause
the failure to reappear, do so to improve performance. Follow the instructions in
“Locating the failing method” to improve the performance of the workaround.

If the failure still occurs at the “noOpt” optimization level, you must disable the
JIT compiler as a workaround.

Locating the failing method
When you have determined the lowest optimization level at which the JIT or AOT
compiler must compile methods to trigger the failure, you can find out which part
of the Java program, when compiled, causes the failure. You can then instruct the
compiler to limit the workaround to a specific method, class, or package, allowing
the compiler to compile the rest of the program as usual. For JIT compiler failures,
if the failure occurs with -Xjit:optLevel=noOpt, you can also instruct the compiler
to not compile the method or methods that are causing the failure at all.

Before you begin

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00000000
Target=2_30_20050520_01866_BHdSMr (Linux 2.4.21-27.0.2.EL)
CPU=s390x (2 logical CPUs) (0x7b6a8000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=4148bf20 Signal_Code=00000001
Handler1=00000100002ADB14 Handler2=00000100002F480C InaccessibleAddress=0000000000000000
gpr0=0000000000000006 gpr1=0000000000000006 gpr2=0000000000000000 gpr3=0000000000000006
gpr4=0000000000000001 gpr5=0000000080056808 gpr6=0000010002BCCA20 gpr7=0000000000000000
......
Compiled_method=java/security/AccessController.toArrayOfProtectionDomains([Ljava/lang/Object;
Ljava/security/AccessControlContext;)[Ljava/security/ProtectionDomain;

The important lines are:

vmState=0x00000000
Indicates that the code that failed was not JVM runtime code.

Module= or Module_base_address=
Not in the output (might be blank or zero) because the code was compiled by
the JIT, and outside any DLL or library.

Compiled_method=
Indicates the Java method for which the compiled code was produced.

152 WebSphere Real Time V2 for Linux: User Guide

About this task

If your output does not indicate the failing method, follow these steps to identify
the failing method:

Procedure
1. Run the Java program with the JIT parameters verbose and vlog=<filename> to

the -Xjit or -Xaot option. With these parameters, the compiler lists compiled
methods in a log file named <filename>.<date>.<time>.<pid>, also called a
limit file. A typical limit file contains lines that correspond to compiled methods,
like:
+ (hot) java/lang/Math.max(II)I @ 0x10C11DA4-0x10C11DDD

Lines that do not start with the plus sign are ignored by the compiler in the
following steps and you can remove them from the file. Methods compiled by
the AOT compiler start with + (AOT cold). Methods for which AOT code is
loaded from the shared class cache start with + (AOT load).

2. Run the program again with the JIT or AOT parameter
limitFile=(<filename>,<m>,<n>), where <filename> is the path to the limit file,
and <m> and <n> are line numbers indicating the first and the last methods in
the limit file that should be compiled. The compiler compiles only the methods
listed on lines <m> to <n> in the limit file. Methods not listed in the limit file
and methods listed on lines outside the range are not compiled and no AOT
code in the shared data cache for those methods will be loaded. If the program
no longer fails, one or more of the methods that you have removed in the last
iteration must have been the cause of the failure.

3. Optional: If you are diagnosing an AOT problem, run the program a second
time with the same options to allow compiled methods to be loaded from the
shared data cache. You can also add the –Xaot:scount=0 option to ensure that
AOT-compiled methods stored in the shared data cache will be used when the
method is first called. Some AOT compilation failures happen only when
AOT-compiled code is loaded from the shared data cache. To help diagnose
these problems, use the –Xaot:scount=0 option to ensure that AOT-compiled
methods stored in the shared data cache are used when the method is first
called, which might make the problem easier to reproduce. Please note that if
you set the scount option to 0 it will force AOT code loading and will pause
any application thread waiting to execute that method. Thus, this should only
be used for diagnostic purposes. More significant pause times can occur with
the –Xaot:scount=0 option.

4. Repeat this process using different values for <m> and <n>, as many times as
necessary, to find the minimum set of methods that must be compiled to trigger
the failure. By halving the number of selected lines each time, you can perform
a binary search for the failing method. Often, you can reduce the file to a single
line.

What to do next

When you have located the failing method, you can disable the JIT or AOT
compiler for the failing method only. For example, if the method
java/lang/Math.max(II)I causes the program to fail when JIT-compiled with
optLevel=hot, you can run the program with:
-Xjit:{java/lang/Math.max(II)I}(optLevel=warm,count=0)

to compile only the failing method at an optimization level of “warm”, but
compile all other methods as usual.

Chapter 8. Using diagnostic tools 153

If a method fails when it is JIT-compiled at “noOpt”, you can exclude it from
compilation altogether, using the exclude={<method>} parameter:
-Xjit:exclude={java/lang/Math.max(II)I}

If a method causes the program to fail when AOT code is compiled or loaded from
the shared data cache, exclude the method from AOT compilation and AOT
loading using the exclude={<method>} parameter:
-Xaot:exclude={java/lang/Math.max(II)I}

AOT methods are compiled at the “cold” optimization level only. Preventing AOT
compilation or AOT loading is the best approach for these methods.

Identifying JIT compilation failures
For JIT compiler failures, analyze the error output to determine if a failure occurs
when the JIT compiler attempts to compile a method.

If the JVM crashes, and you can see that the failure has occurred in the JIT library
(libj9jit24.so or libj9jit25.so), the JIT compiler might have failed during an
attempt to compile a method.

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00050000
Target=2_30_20051215_04381_BHdSMr (Linux 2.4.21-32.0.1.EL)
CPU=ppc64 (4 logical CPUs) (0xebf4e000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=00000000 Signal_Code=00000001
Handler1=0000007FE05645B8 Handler2=0000007FE0615C20
R0=E8D4001870C00001 R1=0000007FF49181E0 R2=0000007FE2FBCEE0 R3=0000007FF4E60D70
R4=E8D4001870C00000 R5=0000007FE2E02D30 R6=0000007FF4C0F188 R7=0000007FE2F8C290
......
Module=/home/test/sdk/jre/bin/libj9jit24.so
Module_base_address=0000007FE29A6000
......
Method_being_compiled=com/sun/tools/javac/comp/Attr.visitMethodDef(Lcom/sun/tools/javac/tree/
JCTree$JCMethodDecl;)

The important lines are:

vmState=0x00050000
Indicates that the JIT compiler is compiling code. For a list of vmState code
numbers, see the table in Javadump “TITLE, GPINFO, and ENVINFO sections”
on page 88

Module=/home/test/sdk/jre/bin/libj9jit24.so
Indicates that the error occurred in libj9jit24.so, the JIT compiler module.

Method_being_compiled=
Indicates the Java method being compiled.

If your output does not indicate the failing method, use the verbose option with
the following additional settings:
-Xjit:verbose={compileStart|compileEnd}

These verbose settings report when the JIT starts to compile a method, and when
it ends. If the JIT fails on a particular method (that is, it starts compiling, but
crashes before it can end), use the exclude parameter to exclude it from

154 WebSphere Real Time V2 for Linux: User Guide

compilation (refer to “Locating the failing method” on page 152). If excluding the
method prevents the crash, you have a workaround that you can use while the
service team corrects your problem.

Performance of short-running applications
The IBM JIT compiler is tuned for long-running applications typically used on a
server. You can use the -Xquickstart command-line option to improve the
performance of short-running applications, especially for applications in which
processing is not concentrated into a small number of methods.

-Xquickstart causes the JIT compiler to use a lower optimization level by default
and to compile fewer methods. Performing fewer compilations more quickly can
improve application startup time. When the AOT compiler is active (both shared
classes and AOT compilation enabled), -Xquickstart causes all methods selected for
compilation to be AOT compiled, which improves the startup time of subsequent
runs. -Xquickstart can degrade performance if it is used with long-running
applications that contain hot methods. The implementation of -Xquickstart is
subject to change in future releases.

You can also try improving startup times by adjusting the JIT threshold (using trial
and error). See “Selectively disabling the JIT compiler” on page 151 for more
information.

JVM behavior during idle periods
You can reduce the CPU cycles consumed by an idle JVM by using the
-XsamplingExpirationTime option to turn off the JIT sampling thread.

The JIT sampling thread profiles the running Java application to discover
commonly used methods. The memory and processor usage of the sampling thread
is negligible, and the frequency of profiling is automatically reduced when the
JVM is idle.

In some circumstances, you might want no CPU cycles consumed by an idle JVM.
To do so, specify the -XsamplingExpirationTime<time> option. Set <time> to the
number of seconds for which you want the sampling thread to run. Use this option
with care; after it is turned off, you cannot reactivate the sampling thread. Allow
the sampling thread to run for long enough to identify important optimizations.

The Diagnostics Collector
The Diagnostics Collector gathers the Java diagnostics files for a problem event.

Using the Diagnostics Collector
The Diagnostics Collector gathers the Java diagnostics files for a problem event.

The Java runtime produces multiple diagnostics files in response to events such as
General Protection Faults, out of memory conditions or receiving unexpected
operating system signals. The Diagnostics Collector runs just after the Java runtime
produces diagnostics files. It searches for system dumps, Java dumps, heap dumps,
Java trace dumps and the verbose GC log that match the time stamp for the
problem event. If a system dump is found, then optionally the Diagnostics
Collector can execute jextract to post-process the dump and capture extra
information required to analyze system dumps. The Diagnostics Collector then
produces a single .zip file containing all the diagnostics for the problem event.

Chapter 8. Using diagnostic tools 155

Steps in the collection of diagnostics are logged in a text file. At the end of the
collection process, the log file is copied into the output .zip file.

The Diagnostics Collector also has a feature to give warnings if there are JVM
settings in place that could prevent the JVM from producing diagnostics. These
warnings are produced at JVM start up so that the JVM can be restarted with fixed
settings if necessary. The warnings are printed on stderr and in the Diagnostics
Collector log file. Fix the settings identified by any warning messages before
restarting your Java application. Fixing warnings makes it more likely that the
right data is available for IBM Support to diagnose a Java problem.

Using the -Xdiagnosticscollector option
This option enables the Diagnostics Collector.

The Diagnostics Collector is off by default and is enabled by a JVM command-line
option:
-Xdiagnosticscollector[:settings=<filename>]

Specifying a Diagnostics Collector settings file is optional. By default, the settings
file jre/lib/dc.properties is used. See “Diagnostics Collector settings” on page
158 for details of the settings available.

If you run a Java program from the command line with the Diagnostics Collector
enabled, it produces some console output. The Diagnostics Collector runs
asynchronously, in a separate process to the one that runs your Java program. The
effect is that output appears after the command-line prompt returns from running
your program. If this happens, it does not mean that the Diagnostics Collector has
hung. Press enter to get the command-line prompt back.

Collecting diagnostics from Java runtime problems
The Diagnostics Collector produces an output file for each problem event that
occurs in your Java application.

When you add the command-line option -Xdiagnosticscollector, the Diagnostics
Collector runs and produces several output .zip files. One file is produced at
startup. Another file is produced for each dump event that occurs during the
lifetime of the JVM. For each problem event that occurs in your Java application,
one .zip file is created to hold all the diagnostics for that event. For example, an
application might have multiple OutOfMemoryErrors but keep on running.
Diagnostics Collector produces multiple .zip files, each holding the diagnostics
from one OutOfMemoryError.

The output .zip file is written to the current working directory by default. You can
specify a different location by setting the output.dir property in the settings file, as
described in “Diagnostics Collector settings” on page 158. An output .zip file name
takes the form:
java.<event>.<YYYYMMDD.hhmmss.pid>.zip

In this file name, <event> is one of the following names:
v abortsignal
v check
v dumpevent
v gpf

156 WebSphere Real Time V2 for Linux: User Guide

v outofmemoryerror
v usersignal
v vmstart
v vmstop

These event names refer to the event that triggered Diagnostics Collector. The
name provides a hint about the type of problem that occurred. The default name is
dumpevent, and is used when a more specific name cannot be given for any reason.

<YYYYMMDD.hhmmss.pid> is a combination of the time stamp of the dump event,
and the process ID for the original Java application. pid is not the process ID for
the Diagnostics Collector.

The Diagnostics Collector copies files that it writes to the output .zip file. It does
not delete the original diagnostics information.

When the Diagnostics Collector finds a system dump for the problem event, then
by default it runs jextract to post-process the dump and gather context information
This information enables later debugging. Diagnostics Collector automates a
manual step that is requested by IBM support on most platforms. You can prevent
Diagnostics Collector from running jextract by setting the property run.jextract to
false in the settings file. For more information, see “Diagnostics Collector settings”
on page 158.

The Diagnostics Collector logs its actions and messages in a file named
JavaDiagnosticsCollector.<number>.log. The log file is written to the current
working directory. The log file is also stored in the output .zip file. The <number>
component in the log file name is not significant; it is added to keep the log file
names unique.

The Diagnostics Collector is a Java VM dump agent. It is run by the Java VM in
response to the dump events that produce diagnostic files by default. It runs in a
new Java process, using the same version of Java as the VM producing dumps.
This ensures that the tool runs the correct version of jextract for any system dumps
produced by the original Java process.

Verifying your Java diagnostics configuration
When you enable the command-line option -Xdiagnosticscollector, a diagnostics
configuration check runs at Java VM start up. If any settings disable key Java
diagnostics, a warning is reported.

The aim of the diagnostics configuration check is to avoid the situation where a
problem occurs after a long time, but diagnostics are missing because they were
inadvertently switched off. Diagnostic configuration check warnings are reported
on stderr and in the Diagnostics Collector log file. A copy of the log file is stored
in the java.check.<timestamp>.<pid>.zip output file.

If you do not see any warning messages, it means that the Diagnostics Collector
has not found any settings that disable diagnostics. The Diagnostics Collector log
file stored in java.check.<timestamp>.<pid>.zip gives the full record of settings
that have been checked.

For extra thorough checking, the Diagnostics Collector can trigger a Java dump.
The dump provides information about the command-line options and current Java
system properties. It is worth running this check occasionally, as there are

Chapter 8. Using diagnostic tools 157

command-line options and Java system properties that can disable significant parts
of the Java diagnostics. To enable the use of a Java dump for diagnostics
configuration checking, set the config.check.javacore option to true in the settings
file. For more information, see “Diagnostics Collector settings.”

For all platforms, the diagnostics configuration check examines environment
variables that can disable Java diagnostics. For reference purposes, the full list of
current environment variables and their values is stored in the Diagnostics
Collector log file.

Checks for operating system settings are carried out on Linux and AIX. On Linux,
the core and file size ulimits are checked. On AIX, the settings fullcore=true and
pre430core=false are checked, as well as the core and file size ulimits.

Configuring the Diagnostics Collector
The Diagnostics Collector supports various options that can be set in a properties
file.

Diagnostics Collector can be configured by using options that are set in a
properties file. By default, the properties file is jre/lib/dc.properties. If you do
not have access to edit this file, or if you are working on a shared system, you can
specify an alternative filename using:
-Xdiagnosticscollector:settings=<filename>

Using a settings file is optional. By default, Diagnostics Collector gathers all the
main types of Java diagnostics files.

Diagnostics Collector settings
The Diagnostics Collector has several settings that affect the way the collector
works.

The settings file uses the standard Java properties format. It is a text file with one
property=value pair on each line. Each supported property controls the Diagnostic
Collector in some way. Lines that start with '#' are comments.

Parameters

file.<any_string>=<pathname>

Any property with a name starting file. specifies the path to a diagnostics file
to collect. You can add any string as a suffix to the property name, as a
reminder of which file the property refers to. You can use any number of file.
properties, so you can tell the Diagnostics Collector to collect a list of custom
diagnostic files for your environment. Using file. properties does not alter or
prevent the collection of all the standard diagnostic files. Collection of standard
diagnostic files always takes place.

Custom debugging scripts or software can be used to produce extra output
files to help diagnose a problem. In this situation, the settings file is used to
identify the extra debug output files for the Diagnostics Collector. The
Diagnostics Collector collects the extra debug files at the point when a problem
occurs. Using the Diagnostics Collector in this way means that debug files are
collected immediately after the problem event, increasing the chance of
capturing relevant context information.

output.dir=<output_directory_path>

158 WebSphere Real Time V2 for Linux: User Guide

The Diagnostic Collector tries to write its output .zip file to the output
directory path that you specify. The path can be absolute or relative to the
working directory of the Java process. If the directory does not exist, the
Diagnostics Collector tries to create it. If the directory cannot be created, or the
directory is not writeable, the Diagnostics Collector defaults to writing its
output .zip file to the current working directory.

Note: On Windows systems, Java properties files use backslash as an escape
character. To specify a backslash as part of Windows path name, use a double
backslash '\\' in the properties file.

loglevel.file=<level>
This setting controls the amount of information written to the Diagnostic
Collector log file. The default setting for this property is config. Valid levels
are:

off No information reported.

severe Errors are reported.

warning
Report warnings in addition to information reported by severe.

info More detailed information in addition to that reported by warning.

config Configuration information reported in addition to that reported by
info. This is the default reporting level.

fine Tracing information reported in addition to that reported by config.

finer Detailed tracing information reported in addition to that reported by
fine.

finest Report even more tracing information in addition to that reported by
finer.

all Report everything.

loglevel.console=<level>
Controls the amount of information written by the Diagnostic Collector to
stderr. Valid values for this property are as described for loglevel.file. The
default setting for this property is warning.

settings.id=<identifier>
Allows you to set an identifier for the settings file. If you set loglevel.file to
fine or lower, the settings.id is recorded in the Diagnostics Collector log file as
a way to check that your settings file is loaded as expected.

config.check.javacore={true|false}
Set config.check.javacore=true to enable a Java dump for the diagnostics
configuration check at virtual machine start-up. The check means that the
virtual machine start-up takes more time, but it enables the most thorough
level of diagnostics configuration checking.

run.jextract=false
Set this option to prevent the Diagnostics Collector running jextract on
detected System dumps.

Known limitations
There are some known limitations for the Diagnostics Collector.

Chapter 8. Using diagnostic tools 159

If Java programs do not start at all on your system, for example because of a Java
runtime installation problem or similar issue, the Diagnostics Collector cannot run.

The Diagnostics Collector does not respond to additional -Xdump settings that
specify extra dump events requiring diagnostic information. For example, if you
use -Xdump to produce dumps in response to a particular exception being thrown,
the Diagnostics Collector does not collect the dumps from this event.

Garbage Collector diagnostics
This section describes how to diagnose garbage collection.

For information about Real Time garbage collection diagnostics, see
“Troubleshooting the Metronome Garbage Collector” on page 20. For information
about garbage collection diagnostics in the standard JVM, see the Diagnostics Guide.

Shared classes diagnostics
Understanding how to diagnose problems that might occur will help you to use
shared classes mode.

For an introduction to shared classes, see .

Deploying shared classes
You cannot just "switch on" class sharing without considering how to deploy it
sensibly for the chosen application. This section looks at some of the important
issues to consider.

Cache naming
If multiple users will be using an application that is sharing classes or multiple
applications are sharing the same cache, knowing how to name caches
appropriately is important. The ultimate goal is to have the smallest number of
caches possible, while maintaining secure access to the class data and allowing as
many applications and users as possible to share the same classes.

To use a cache for a specific application, write the cache into the application
installation directory using the -Xshareclasses:cachedir=<dir> option. This helps
prevent users of other applications from accidentally using the same cache, and
automatically removes the cache if the application is uninstalled.

If the same user will always be using the same application, either use the default
cache name (which includes the user name) or specify a cache name specific to the
application. The user name can be incorporated into a cache name using the %u
modifier, which causes each user running the application to get a separate cache.

On Linux, AIX, z/OS, and i5/OS platforms, if multiple users in the same operating
system group are running the same application, use the groupAccess suboption,
which creates the cache allowing all users in the same primary group to share the
same cache. If multiple operating system groups are running the same application,
the %g modifier can be added to the cache name, causing each group running the
application to get a separate cache.

Multiple applications or different JVM installations can share the same cache
provided that the JVM installations are of the same service release level. It is
possible for different JVM service releases to share the same cache, but it is not

160 WebSphere Real Time V2 for Linux: User Guide

advised. The JVM will attempt to destroy and re-create a cache created by a
different service release. See “Compatibility between service releases” on page 165
for more information.

Small applications that load small numbers of application classes should all try to
share the same cache, because they will still be able to share bootstrap classes. For
large applications that contain completely different classes, it might be more
sensible for them to have a class cache each, because there will be few common
classes and it is then easier to selectively clean up caches that aren't being used.

On Linux, AIX, z/OS, and i5/OS, /tmp is used as the default directory, which is
shared by all users.

Cache access
A JVM can access a shared class cache with either read-write or read-only access.
Read-write access is the default and allows all users equal rights to update the
cache. Use the -Xshareclasses:readonly option for read-only access.

Opening a cache as read-only makes it easier to administrate operating system
permissions. A cache created by one user cannot be opened read-write by other
users, but other users can get startup time benefits by opening the cache as
read-only. Opening a cache as read-only also prevents corruption of the cache. This
can be useful on production systems where one instance of an application
corrupting the cache could affect the performance of all other instances.

When a cache is opened read-only, class files of the application that are modified
or moved cannot be updated in the cache. Sharing will be disabled for the
modified or moved containers for that JVM.
Related information

“Security considerations for the shared class cache” on page 4
The shared class cache is designed for ease of cache management and usability, but
the default security policy might not be appropriate.

Cache housekeeping
Unused caches on a system use resources that could be used by another
application. Ensuring that caches are sensibly managed is important.

The JVM offers a number of features to assist in cache housekeeping. To
understand these features, it is important to explain the differences in behavior
between persistent and non-persistent caches.

Persistent caches are written to disk and remain there until explicitly destroyed.
Persistent caches are not removed when the operating system is restarted. Because
persistent caches do not exist in shared memory, the only penalty of not destroying
stale caches is that they take up disk space.

Non-persistent caches exist in shared memory. They retain system resources that
could usefully be employed by other applications. However, non-persistent caches
are automatically purged when the operating system is restarted, so housekeeping
is only an issue between operating system restarts.

The success of any housekeeping functions is dependent on the user having the
correct operating system permissions, whether the housekeeping is automatic or
explicit. In general, if the user has the permissions to open a cache with read-write
access, they also have the permissions to destroy it. The only exception is for

Chapter 8. Using diagnostic tools 161

non-persistent caches on Linux, AIX, z/OS, and i5/OS. These caches can only be
destroyed by the user which created the cache. Caches can only be destroyed if
they are not in use.

The JVM provides a number of housekeeping utilities, which are all suboptions to
the -Xshareclasses command-line option. Each suboption performs the explicit
action requested. The suboption might also perform other automated housekeeping
activities. Each suboption works in the context of a specific cacheDir.

destroy
This suboption destroys a named cache

destroyAll
This suboption destroys all caches in the specified cacheDir.

expire=<time in minutes>
This suboption looks for caches which have not been connected to for the
<time in minutes> specified. If any caches are found which have not been
connected to in that specified time, they are destroyed.

expire=0
This suboption is the same as destroyAll.

expire=10000
This suboption destroys all caches which have not been used for
approximately one week.

There is also a certain amount of automatic housekeeping which is done by the
JVM. Most of this automatic housekeeping is driven by the cache utilities.
destroyAll and expire attempt to destroy all persistent and non-persistent caches
of all JVM levels and service releases in a given cacheDir. destroy only works on a
specific cache of a specific name and type.

There are two specific cases where the JVM attempts automatic housekeeping
when not requested by the user.
1. The first case is when a JVM connects to a cache, and determines that the cache

is corrupted or was created by a different service release. The JVM attempts to
destroy and re-create the cache.

2. The second case is if /tmp/javasharedresources is deleted on a Linux, AIX,
z/OS, or i5/OS system. The JVM attempts to identify leaked shared memory
areas from non-persistent caches. If any areas are found, they are purged.

With persistent caches, it is safe to delete the cache files manually from the file
system. Each persistent cache has only one system object: the cache file.

It is not safe to delete cache files manually for non-persistent caches. The reason is
that each non-persistent cache has four system objects: a shared memory area, a
shared semaphore, and two control files to identify the memory and semaphores to
the JVM. Deleting the control files causes the memory and semaphores to be
leaked. They can then only be identified and removed using the ipcs and ipcrm
commands on Linux, AIX, z/OS, and i5/OS.

The reset suboption can also be used to cause a JVM to refresh an existing class
cache when it starts up. The cache is destroyed and re-created if it is not already in
use. The option -Xshareclasses:reset can be added anywhere to the command line.
The option does not override any other Xshareclasses command-line options. This

162 WebSphere Real Time V2 for Linux: User Guide

constraint means that -Xshareclasses:reset can be added to the
IBM_JAVA_OPTIONS environment variable, or any of the other means of passing
command-line options to the JVM.

Cache performance
Shared classes employs numerous optimizations to perform as well as possible
under most circumstances. However, there are configurable factors which can affect
shared classes performance, which are discussed here.

Use of Java archive and compressed files

The cache keeps itself up-to-date with file system updates by constantly checking
file system timestamps against the values in the cache.

Because a classloader can obtain a lock on a .jar file, after the .jar has been
opened and read, it is assumed that the .jar remains locked and does not need to
be constantly checked.

Because .class files can created or deleted from a directory at any time, a
directory in a class path, particularly near the start, will inevitably have a
performance affect on shared classes because it must be constantly checked for
classes that might have created. For example, with a class path of
/dir1:jar1.jar:jar2.jar:jar3.jar;, when loading any class from the cache using
this class path, the directory /dir1 must be checked for the existence of the class
for every class load. This checking also requires fabricating the expected directory
from the class's package name. This operation can be expensive.

Advantages of not filling the cache

A full shared classes cache is not a problem for any JVMs connected to it.
However, a full cache can place restrictions on how much sharing can be
performed by other JVMs or applications.

ROMClasses are added to the cache and are all unique. Metadata is added
describing the ROMClasses and there can be multiple metadata entries
corresponding to a single ROMClass. For example, if class A is loaded from
myApp1.jar and then another JVM loads the same class A from myOtherApp2.jar,
only one ROMClass will exist in the cache, with two pieces of metadata describing
the two locations it came from.

If many classes are loaded by an application and the cache is 90% full, another
installation of the same application can use the same cache, and the amount of
extra information that needs to be added about the second application's classes is
minimal, even though they are separate copies on the file system.

After the extra metadata has been added, both installations can share the same
classes from the same cache. However, if the first installation fills the cache
completely, there is no room for the extra metadata and the second installation
cannot share classes because it cannot update the cache. The same limitation
applies for classes that become stale and are redeemed. (See “Redeeming stale
classes” on page 172). Redeeming the stale class requires a small quantity of
metadata to be added to the cache. If you cannot add to the cache, because it is
full, the class cannot be redeemed.

Chapter 8. Using diagnostic tools 163

Read-only cache access

If the JVM opens a cache with read-only access, it does not need to obtain any
operating system locks to read the data, which can make cache access slightly
faster. However, if any containers of cached classes are changed or moved on a
class path, then sharing will be disabled for all classes on that class path. This is
because the JVM is unable to update the cache with the changes and it is too
expensive for the cache code to continually re-check for updates to containers on
each class-load.

Page protection

By default, the JVM protects all cache memory pages using page protection to
prevent accidental corruption by other native code running in the process. If any
native code attempts to write to the protected page, the process will exit, but all
other JVMs will be unaffected.

The only page not protected by default is the cache header page because the cache
header must be updated much more frequently than the other pages. The cache
header can be protected by using the -Xshareclasses:mprotect=all option. This has
a very small affect on performance and is not enabled by default.

Switching off memory protection completely using -Xshareclasses:mprotect=none
does not provide significant performance gains.

Caching Ahead Of Time (AOT) code

The JVM might automatically store a small amount of Ahead Of Time (AOT)
compiled native code in the cache when it is populated with classes. The AOT
code allows any subsequent JVMs attaching to the cache to start faster. AOT data is
generated for methods where it is likely to be most effective.

You can use the -Xshareclasses:noaot, -Xscminaot, and -Xscmaxaot options to
control the use of AOT code in the cache.

In general, the default settings provide significant startup performance benefits and
use only a small amount of cache space. In some cases, for example, running the
JVM without the JIT, there is no benefit gained from the cached AOT code. In these
cases you should turn off caching of AOT code.

To diagnose AOT issues, use the -Xshareclasses:verboseAOT command-line
option. This will generate messages when AOT code is found or stored in the
cache, and extra messages you can use to detect cache problems related to AOT.
These messages all begin with the code JVMJITM.

Making the most efficient use of cache space

A shared class cache is a finite size and cannot grow. The JVM attempts to make
the most efficient use of cache space that it can. It does this by sharing strings
between classes and ensuring that classes are not duplicated. However, there are
also command-line options which allow the user to optimize the cache space
available.

-Xscminaot and -Xscmaxaot place upper and lower limits on the amount of AOT
data the JVM can store in the cache and -Xshareclasses:noaot prevents the JVM
from storing any AOT data.

164 WebSphere Real Time V2 for Linux: User Guide

-Xshareclasses:nobootclasspath disables the sharing of classes on the boot class
path, so that only classes from application classloaders are shared. There are also
optional filters that can be applied to Java classloaders to place custom limits on
the classes that are added to the cache.

Very long class paths

When a class is loaded from the shared class cache, the class path against which it
was stored and the class path of the caller classloader are “matched” to see
whether the cache should return the class. The match does not have to be exact,
but the result should be exactly the same as if the class were loaded from disk.

Matching very long class paths is initially expensive, but successful and failed
matches are remembered, so that loading classes from the cache using very long
class paths is much faster than loading from disk.

Growing classpaths

Where possible, avoid gradually growing a classpath in a URLClassLoader using
addURL(). Each time an entry is added, an entire new class path must be added to
the cache.

For example, if a class path with 50 entries is grown using addURL(), you could
create 50 unique class paths in the cache. This gradual growth uses more cache
space and has the potential to slow down class path matching when loading
classes.

Concurrent access

A shared class cache can be updated and read concurrently by any number of
JVMs.

Any number of JVMs can read from the cache at the same time as a single JVM is
writing to it. If many JVMs start at the same time and no cache exists, one JVM
will win the race to create the cache and then all JVMs will race to populate the
cache with potentially the same classes.

Multiple JVMs concurrently loading the same classes are coordinated to a certain
extent by the cache itself to mitigate the effects of many JVMs loading the same
class from disk and racing to store it.

Class GC with shared classes

Running with shared classes has no affect on class garbage collection. Classloaders
loading classes from the shared class cache can be garbage collected in exactly the
same way as classloaders that load classes from disk. If a classloader is garbage
collected, the ROMClasses it has added to the cache will persist.

Compatibility between service releases
Use the most recent service release of a JVM for any application.

It is not recommended for different service releases to share the same class cache
concurrently. A class cache is compatible with earlier and later service releases.
However, there might be small changes in the class files or the internal class file
format between service releases. These changes might result in duplication of
classes in the cache. For example, a cache created by a given service release can

Chapter 8. Using diagnostic tools 165

continue to be used by an updated service release, but the updated service release
might add extra classes to the cache if space allows.

To reduce class duplication, if the JVM connects to a cache which was created by a
different service release, it attempts to destroy the cache then re-create it. This
automated housekeeping feature is designed so that when a new JVM level is used
with an existing application, the cache is automatically refreshed. However, the
refresh only succeeds if the cache is not in use by any other JVM. If the cache is in
use, the JVM cannot refresh the cache, but uses it where possible.

If different service releases do use the same cache, the JVM disables AOT. The
effect is that AOT code in the cache is ignored.

Nonpersistent shared cache cleanup
When using UNIX System V workstations, you might want to clean up the cache
files manually.

When using nonpersistent caches on UNIX System V workstations, four artifacts
are created on the system:
v Some System V shared memory.
v A System V semaphore.
v A control file for the shared memory.
v A control file for the semaphore.

The control files are used to look up the System V IPC objects. For example, the
semaphore control file provides information to help find the System V semaphore.
During system cleanup, ensure that you do not delete the control files before the
System V IPC objects are removed.

To remove artifacts, run a J9 JVM with the -Xsharedclasses:nonpersistent,destroy
or -Xsharedclasses:destroyAll command-line options. For example:
java –Xshareclasses:nonpersistent,destroy,name=mycache

or
java –Xshareclasses:destroyAll

It is sometimes necessary to clean up a system manually, for example when the
control files have been removed from the file system.

For Java 6 SR4 and later, manual cleanup is required when the JVM warns that
you are attaching to a System V object that might be orphaned because of a
missing control file. For example, you might see messages like the following
output:
JVMPORT021W You have opened a stale System V shared semaphore: file:/tmp/javasharedresources/C240D2A64_semaphore_sharedcc_J9BUILD_G06 semid:15994888
JVMPORT020W You have opened a stale System V shared memory: file:/tmp/javasharedresources/C240D2A64_memory_sharedcc_J9BUILD_G06 shmid:1056778

J9 JVMs earlier than Java 6 SR4 produce error messages like the following to
indicate a problem with the system:
JVMSHRC020E An error has occurred while opening semaphore
JVMSHRC017E Error code: -308
JVMSHRC320E Error recovery: destroying shared memory semaphores.
JVMJ9VM015W Initialization error for library j9shr24(11):
JVMJ9VM009E J9VMDllMain failed

166 WebSphere Real Time V2 for Linux: User Guide

In response to these messages, run the following command as root, or for each
user that might have created shared caches on the system:
ipcs -a

v For Java 6 SR4 and later, record all semaphores IDs with corresponding keys
having MSB 0xad.

v For Java 6 SR4 and later, record all memory IDs with corresponding keys having
MSB 0xde.

v For earlier versions of Java 6, do the same except both keys begin with MSB
0x01 to 0x14

For each System V semaphore ID, run the command:
ipcrm –s <semid>

where <semid> is the recorded System V semaphore ID.

For each System V shared memory ID, run the command:
ipcrm –m <shmid>

where <shmid> is the recorded System V shared memory ID.

Dealing with runtime bytecode modification
Modifying bytecode at runtime is an increasingly popular way to engineer
required function into classes. Sharing modified bytecode improves startup time,
especially when the modification being used is expensive. You can safely cache
modified bytecode and share it between JVMs, but there are many potential
problems because of the added complexity. It is important to understand the
features described in this section to avoid any potential problems.

This section contains a brief summary of the tools that can help you to share
modified bytecode.

Potential problems with runtime bytecode modification
The sharing of modified bytecode can cause potential problems.

When a class is stored in the cache, the location from which it was loaded and a
time stamp indicating version information are also stored. When retrieving a class
from the cache, the location from which it was loaded and the time stamp of that
location are used to determine whether the class should be returned. The cache
does not note whether the bytes being stored were modified before they were
defined unless it is specifically told so. Do not underestimate the potential
problems that this modification could introduce:
v In theory, unless all JVMs sharing the same classes are using exactly the same

bytecode modification, JVMs could load incorrect bytecode from the cache. For
example, if JVM1 populates a cache with modified classes and JVM2 is not using
a bytecode modification agent, but is sharing classes with the same cache, it
could incorrectly load the modified classes. Likewise, if two JVMs start at the
same time using different modification agents, a mix of classes could be stored
and both JVMs will either throw an error or demonstrate undefined behavior.

v An important prerequisite for caching modified classes is that the modifications
performed must be deterministic and final. In other words, an agent which
performs a particular modification under one set of circumstances and a
different modification under another set of circumstances, cannot use class

Chapter 8. Using diagnostic tools 167

caching. This is because only one version of the modified class can be cached for
any given agent and once it is cached, it cannot be modified further or returned
to its unmodified state.

In practice, modified bytecode can be shared safely if the following criteria are
met:
v Modifications made are deterministic and final (described above).
v The cache knows that the classes being stored are modified in a particular way

and can partition them accordingly.

The VM provides features that allow you to share modified bytecode safely, for
example using "modification contexts". However, if a JVMTI agent is
unintentionally being used with shared classes without a modification context, this
usage does not cause unexpected problems. In this situation, if the VM detects the
presence of a JVMTI agent that has registered to modify class bytes, it forces all
bytecode to be loaded from disk and this bytecode is then modified by the agent.
The potentially modified bytecode is passed to the cache and the bytes are
compared with known classes of the same name. If a matching class is found, it is
reused; otherwise, the potentially modified class is stored in such a way that other
JVMs cannot load it accidentally. This method of storing provides a "safety net"
that ensures that the correct bytecode is always loaded by the JVM running the
agent, but any other JVMs sharing the cache will be unaffected. Performance
during class loading could be affected because of the amount of checking involved,
and because bytecode must always be loaded from disk. Therefore, if modified
bytecode is being intentionally shared, the use of modification contexts is
recommended.

Modification contexts
A modification context creates a private area in the cache for a given context, so
that multiple copies or versions of the same class from the same location can be
stored using different modification contexts. You choose the name for a context,
but it must be consistent with other JVMs using the same modifications.

For example, one JVM uses a JVMTI agent "agent1", a second JVM uses no
bytecode modification, a third JVM also uses "agent1", and a fourth JVM uses a
different agent, "agent2". If the JVMs are started using the following command
lines (assuming that the modifications are predictable as described above), they
should all be able to share the same cache:
java -agentlib:agent1 -Xshareclasses:name=cache1,modified=myAgent1 myApp.ClassName
java -Xshareclasses:name=cache1 myApp.ClassName
java -agentlib:agent1 -Xshareclasses:name=cache1,modified=myAgent1 myApp.ClassName
java -agentlib:agent2 -Xshareclasses:name=cache1,modified=myAgent2 myApp.ClassName

SharedClassHelper partitions
Modification contexts cause all classes loaded by a particular JVM to be stored in a
separate cache area. If you need a more granular approach, the SharedClassHelper
API can store individual classes under "partitions".

This ability to use partitions allows an application class loader to have complete
control over the versioning of different classes and is particularly useful for storing
bytecode woven by Aspects. A partition is a string key used to identify a set of
classes. For example, a system might weave a number of classes using a particular
Aspect path and another system might weave those classes using a different
Aspect path. If a unique partition name is computed for the different Aspect paths,
the classes can be stored and retrieved under those partition names.

168 WebSphere Real Time V2 for Linux: User Guide

The default application class loader or bootstrap class loader does not support the
use of partitions; instead, a SharedClassHelper must be used with a custom class
loader.

Using the safemode option
If you have unexpected results or VerifyErrors from cached classes, use safemode
to determine if the bytecode from the cache is correct for your JVM.

Unexpected results from cached classes, or VerifyErrors, might be caused by the
wrong classes being returned. Another cause might be incorrect cached classes. You
can use a debugging mode called safemode to find whether the bytecode being
loaded from the cache is correct for the JVM you are using.

Note: In Java 6, using -Xshareclasses:safemode is the same as running
-Xshareclasses:none. This option has the same effect as not enabling shared
classes.

safemode is a suboption of -Xshareclasses. It prevents the use of shared classes.
safemode does not add classes to a cache.

When you use safemode with a populated cache, it forces the JVM to load all
classes from disk and then apply any modifications to those classes. The class
loader then tries to store the loaded classes in the cache. The class being stored is
compared byte-for-byte against the class that would be returned if the class loader
had not loaded the class from disk. If any bytes do not match, the mismatch is
reported to stderr. Using safemode helps ensure that all classes are loaded from
disk. safemode provides a useful way of verifying whether the bytes loaded from
the shared class cache are the expected bytes.

Do not use safemode in production systems, because it is only a debugging tool
and does not share classes.

JVMTI redefinition and retransformation of classes
Redefined classes are never stored in the cache. Retransformed classes are not
stored in the cache by default, but caching can be enabled using the
-Xshareclasses:cacheRetransformed option.

Redefined classes are classes containing replacement bytecode provided by a
JVMTI agent at runtime, typically where classes are modified during a debugging
session. Redefined classes are never stored in the cache.

Retransformed classes are classes with registered retransformation capable agents
that have been called by a JVMTI agent at runtime. Unlike RedefineClasses, the
RetransformClasses function allows the class definition to be changed without
reference to the original bytecode. An example of retransformation is a profiling
agent that adds or removes profiling calls with each retransformation.
Retransformed classes are not stored in the cache by default, but caching can be
enabled using the -Xshareclasses:cacheRetransformed option. This option will also
work with modification contexts or partitions.

Further considerations for runtime bytecode modification
There are a number of additional items that you need to be aware of when using
the cache with runtime bytecode modification.

If bytecode is modified by a non-JVMTI agent and defined using the JVM's
application classloader when shared classes are enabled, these modified classes are

Chapter 8. Using diagnostic tools 169

stored in the cache and nothing is stored to indicate that these are modified
classes. Another JVM using the same cache will therefore load the classes with
these modifications. If you are aware that your JVM is storing modified classes in
the cache using a non-JVMTI agent, you are advised to use a modification context
with that JVM to protect other JVMs from the modifications.

Combining partitions and modification contexts is possible but not recommended,
because you will have "partitions inside partitions". In other words, a partition A
stored under modification context X will be different from partition A stored under
modification context B.

Because the shared class cache is a fixed size, storing many different versions of
the same class might require a much larger cache than the size that is typically
required. However, note that the identical classes are never duplicated in the cache,
even across modification contexts or partitions. Any number of metadata entries
might describe the class and where it came from, but they all point to the same
class bytes.

If an update is made to the file system and the cache marks a number of classes as
stale as a result, note that it will mark all versions of each class as stale (when
versions are stored under different modification contexts or partitions) regardless
of the modification context being used by the JVM that caused the classes to be
marked stale.

Understanding dynamic updates
The shared class cache must respond to file system updates; otherwise, a JVM
might load from the cache classes that are out of date (stale). After a class has been
marked stale, it is not returned by the cache if it is requested by a class loader.
Instead, the class loader must reload the class from disk and store the updated
version in the cache.

The cache manages itself to ensure that it deals with the following challenges:
v Java archive and compressed files are typically locked by class loaders when

they are in use, but can be updated when the JVM shuts down. Because the
cache persists beyond the lifetime of any JVM using it, subsequent JVMs
connecting to the cache will check for Java archive and compressed file updates.

v .class files (not in jar) can be updated at any time during the lifetime of a JVM.
The cache checks for individual class file updates.

v .class files can be created or removed in directories in classpaths at any time
during the lifetime of a JVM. The cache checks the classpath for classes that
have been created or removed.

v .class files must be in a directory structure that reflects their package structure;
therefore, when checking for updates, the correct directories must be searched.

Because class files contained in jars and compressed files and class files stored as
.class files on the file system present different challenges, the cache treats these as
two different types. Updates are managed by writing file system time stamps into
the cache.

Classes found or stored using a SharedClassTokenHelper cannot be maintained in
this way, because Tokens are meaningless to the cache. AOT data will be updated
automatically as a direct consequence of the class data being updated.

170 WebSphere Real Time V2 for Linux: User Guide

Storing classes

When a classpath is stored in the cache, the Java archive and compressed files are
time stamped and these time stamps are stored as part of the classpath.
(Directories are not time stamped.) When a ROMClass is stored, if it came from a
.class file on the file system, the .class file it came from is time stamped and this
time stamp is stored. Directories are not time stamped because there is no
guarantee that updates to a file will cause an update to its directory.

If a compressed or Java archive file does not exist, the classpath containing it can
still be added to the cache, but ROMClasses from this entry are not stored. If a
ROMClass is being added to the cache from a directory and it does not exist as a
.class file, it is not stored.

Time stamps can also be used to determine whether a ROMClass being added is a
duplicate of one that already exists in the cache.

If a classpath entry is updated on the file system and this entry is out of sync with
a classpath time stamp in the cache, the classpath is added again and time
stamped again in its entirety. Therefore, when a ROMClass is being added to the
cache and the cache is searched for the caller's classpath, any potential classpath
matches are also time stamp-checked to ensure that they are up-to-date before the
classpath is returned.

Finding classes

When the JVM finds a class in the cache, it has to make more checks than when it
stores a class.

When a potential match has been found, if it is a .class file on the file system, the
time stamps of the .class file and the ROMClass stored in the cache are compared.
Regardless of the source of the ROMClass (jar or .class file), every Java archive and
compressed file entry in the caller's classpath, up to and including the index at
which the ROMClass was “found”, must be checked for updates by obtaining the
time stamps. Any update could mean that another version of the class being
returned might have been added earlier in the classpath.

Additionally, any classpath entries that are directories might contain .class files that
will “shadow” the potential match that has been found. Class files might be
created or deleted in these directories at any point. Therefore, when the classpath
is walked and jars and compressed files are checked, directory entries are also
checked to see whether any .class files have been created unexpectedly. This check
involves building a string out of the classpath entry, the package names, and the
class name, and then looking for the classfile. This procedure is expensive if many
directories are being used in class paths. Therefore, using jar files gives better
shared classes performance.

Marking classes as stale

When a Java archive or compressed file classpath entry is updated, all of the
classes in the cache that could potentially have been affected by that update are
marked “stale”. When an individual .class file is updated, only the class or classes
stored from that .class file are marked stale.

The stale marking used is pessimistic because the cache does not know the
contents of individual jars and compressed files.

Chapter 8. Using diagnostic tools 171

For example, therefore, for the following class paths where c has become stale:

a;b;c;d c could now contain new versions of classes in d; therefore, classes in both
c and d are all stale.

c;d;a c could now contain new versions of classes in d and a; therefore, classes
in c, d, and a are all stale.

Classes in the cache that have been loaded from c, d, and a are marked stale.
Therefore, it takes only a single update to one jar file to potentially cause many
classes in the cache to be marked stale. To ensure that there is not massive
duplication as classes are unnecessarily restored, stale classes can be "redeemed" if
it is proved that they are not in fact stale.

Redeeming stale classes

Because classes are marked stale when a class path update occurs, many of the
classes marked stale might have not updated. When a class loader stores a class
that effectively “updates” a stale class, you can “redeem” the stale class if you can
prove that it has not in fact changed.

For example, class X is stored from c with classpath a;b;c;d. Suppose that a is
updated, meaning that a could now contain a new version of X (although it does
not) but all classes loaded from b, c, and d are marked stale. Another JVM wants
to load X, so it asks the cache for it, but it is stale, so the cache does not return the
class. The class loader therefore loads it from disk and stores it, again using
classpath a;b;c;d. The cache checks the loaded version of X against the stale version
of X and, if it matches, the stale version is "redeemed".

AOT code

A single piece of AOT code is associated with a specific method in a specific
version of a class in the cache. If new classes are added to the cache as a result of a
file system update, new AOT code can be generated for those classes. If a
particular class becomes stale, the AOT code associated with that class also
becomes stale. If a class is redeemed, the AOT code associated with that class is
also redeemed. AOT code is not shared between multiple versions of the same
class.

The total amount of AOT code can be limited using -Xscmaxaot and cache space
can be reserved for AOT code using -Xscminaot.

Using the Java Helper API
Classes are shared by the bootstrap class loader internally in the JVM, but any
other Java class loader must use the Java Helper API to find and store classes in
the shared class cache.

The Helper API provides a set of flexible Java interfaces that enable Java class
loaders to exploit the shared classes features in the JVM. The
java.net.URLClassLoader shipped with the SDK has been modified to use a
SharedClassURLClasspathHelper and any class loaders that extend
java.net.URLClassLoader inherit this behavior. Custom class loaders that do not
extend URLClassLoader but want to share classes must use the Java Helper API.
This section contains a summary on the different types of Helper API available and
how to use them.

172 WebSphere Real Time V2 for Linux: User Guide

The Helper API classes are contained in the com.ibm.oti.shared package and
Javadoc information for these classes is shipped with the SDK (some of which is
reproduced here).

com.ibm.oti.shared.Shared
The Shared class contains static utility methods:
getSharedClassHelperFactory() and isSharingEnabled(). If -Xshareclasses is
specified on the command line and sharing has been successfully
initialized, isSharingEnabled() returns true. If sharing is enabled,
getSharedClassHelperFactory() will return a
com.ibm.oti.shared.SharedClassHelperFactory. The helper factories are
singleton factories that manage the Helper APIs. To use the Helper APIs,
you must get a Factory.

com.ibm.oti.shared.SharedClassHelperFactory
SharedClassHelperFactory provides an interface used to create various
types of SharedClassHelper for class loaders. Class loaders and
SharedClassHelpers have a one-to-one relationship. Any attempts to get a
helper for a class loader that already has a different type of helper causes a
HelperAlreadyDefinedException.

Because class loaders and SharedClassHelpers have a one-to-one
relationship, calling findHelperForClassLoader() returns a Helper for a
given class loader if one exists.

com.ibm.oti.shared.SharedClassHelper
There are three different types of SharedClassHelper:
v SharedClassTokenHelper. Use this Helper to store and find classes using

a String token generated by the class loader. Typically used by class
loaders that require complete control over cache contents.

v SharedClassURLHelper. Store and find classes using a file system
location represented as a URL. For use by class loaders that do not have
the concept of a classpath, that load classes from multiple locations.

v SharedClassURLClasspathHelper. Store and find classes using a
classpath of URLs. For use by class loaders that load classes using a
URL class path

Compatibility between Helpers is as follows: Classes stored by
SharedClassURLHelper can be found using a
SharedClassURLClasspathHelper and the opposite also applies. However,
classes stored using a SharedClassTokenHelper can be found only by using
a SharedClassTokenHelper.

Note also that classes stored using the URL Helpers are updated
dynamically by the cache (see “Understanding dynamic updates” on page
170) but classes stored by the SharedClassTokenHelper are not updated by
the cache because the Tokens are meaningless Strings, so it has no way of
obtaining version information.

You can control the classes a URL Helper will find and store in the cache
using a SharedClassURLFilter. An object implementing this interface can be
passed to the SharedClassURLHelper when it is constructed or after it has
been created. The filter is then used to decide which classes to find and
store in the cache. See “SharedClassHelper API” on page 174 for more
information. For a detailed description of each helper and how to use it,
see the Javadoc information shipped with the SDK.

Chapter 8. Using diagnostic tools 173

com.ibm.oti.shared.SharedClassStatistics
The SharedClassStatistics class provides static utilities that return the total
cache size and the amount of free bytes in the cache.

SharedClassHelper API
The SharedClassHelper API provides functions to find and store shared classes.

These functions are:

findSharedClass
Called after the class loader has asked its parent for a class, but before it
has looked on disk for the class. If findSharedClass returns a class (as a
byte[]), pass this class to defineClass(), which defines the class for that JVM
and return it as a java.lang.Class object. The byte[] returned by
findSharedClass is not the actual class bytes. The effect is that you cannot
instrument or manipulate the bytes in the same way as class bytes loaded
from a disk. If a class is not returned by findSharedClass, the class is
loaded from disk (as in the nonshared case) and then the java.lang.Class
defined is passed to storeSharedClass.

storeSharedClass
Called if the class loader has loaded class bytes from disk and has defined
them using defineClass. Do not use storeSharedClass to try to store classes
that were defined from bytes returned by findSharedClass.

setSharingFilter
Register a filter with the SharedClassHelper that is to be used to decide
which classes are found and stored in the cache. Only one filter can be
registered with each SharedClassHelper.

You must resolve how to deal with metadata that cannot be stored. An example is
when java.security.CodeSource or java.util.jar.Manifest objects are derived from jar
files. For each jar, the recommended way to deal with metadata that cannot be
stored is always to load the first class from the jar. Load the class regardless of
whether it exists in the cache or not. This load activity initializes the required
metadata in the class loader, which can then be cached internally. When a class is
then returned by findSharedClass, the function indicates where the class has been
loaded from. The result is that the correct cached metadata for that class can be
used.

It is not incorrect usage to use storeSharedClass to store classes that were loaded
from disk, but which are already in the cache. The cache sees that the class is a
duplicate of an existing class, it is not duplicated, and so the class continues to be
shared. However, although it is handled correctly, a class loader that uses only
storeSharedClass is less efficient than one that also makes appropriate use of
findSharedClass.

Filtering

You can filter which classes are found and stored in the cache by registering an
object implementing the SharedClassFilter interface with the SharedClassHelper.
Before accessing the cache, the SharedClassHelper functions performs filtering
using the registered SharedClassFilter object. For example, you can cache classes
inside a particular package only by creating a suitable filter. To define a filter,
implement the SharedClassFilter interface, which defines the following methods:
boolean acceptStore(String className)
boolean acceptFind(String className)

174 WebSphere Real Time V2 for Linux: User Guide

To allow a class to be found or stored in the cache, return true from your
implementation of these functions. Your implementation of these functions can use
the supplied parameters as required. Make sure that you implement short-running
functions because they are called for every find and store. Register a filter on a
SharedClassHelper using the setSharingFilter(SharedClassFilter filter) function. See
the Javadoc for the SharedClassFilter interface for more information.

Applying a global filter

You can apply a SharedClassFilter to all non-bootstrap class loaders which share
classes. Specify the com.ibm.oti.shared.SharedClassGlobalFilterClass system
property on the command line. For example:
-Dcom.ibm.oti.shared.SharedClassGlobalFilterClass=<filter class name>

Understanding shared classes diagnostics output
When running in shared classes mode, a number of diagnostics tools can help you.
The verbose options are used at runtime to show cache activity and you can use
the printStats and printAllStats utilities to analyze the contents of a shared class
cache.

This section tells you how to interpret the output.

Verbose output
The verbose suboption of -Xshareclasses gives the most concise and simple
diagnostic output on cache usage.

Verbose output will typically look like this:
>java -Xshareclasses:name=myCache,verbose -Xscmx10k HelloWorld
[-Xshareclasses verbose output enabled]
JVMSHRC158I Successfully created shared class cache "myCache"
JVMSHRC166I Attached to cache "myCache", size=10200 bytes
JVMSHRC096I WARNING: Shared Cache "myCache" is full. Use -Xscmx to set cache size.
Hello
JVMSHRC168I Total shared class bytes read=0. Total bytes stored=9284

This output shows that a new cache called myCache was created, which was only
10 kilobytes in size and the cache filled up almost immediately. The message
displayed on shut down shows how many bytes were read or stored in the cache.

VerboseIO output
The verboseIO output is far more detailed and is used at runtime to show classes
being stored and found in the cache. You enable verboseIO output by using the
verboseIO suboption of -Xshareclasses.

VerboseIO output provides information about the I/O activity occurring with the
cache, with basic information on find and store calls. With a cold cache, you see
trace like this:

Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 0... Failed.
Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 3... Failed.
Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 17... Failed.
Storing class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 17... Succeeded.

Each classloader is given a unique ID and the boostrap loader is always 0. In the
trace above, you see classloader 17 obeying the classloader hierarchy of asking its
parents for the class. Each of its parents consequently asks the shared cache for the
class because it does not yet exist in the cache, all the find calls fail and classloader
17 stores it.

Chapter 8. Using diagnostic tools 175

After the class is stored, you see the following output:
Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 0... Failed.
Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 3... Failed.
Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 17... Succeeded.

Again, the classloader obeys the hierarchy, with its parents asking the cache for the
class first. It succeeds for the correct classloader. Note that with alternative
classloading frameworks, such as OSGi, the parent delegation rules are different, so
you will not necessarily see this type of output.

VerboseHelper output
You can also obtain diagnostics from the Java SharedClassHelper API using the
verboseHelper suboption.

The output is divided into information messages and error messages:
v Information messages are prefixed with:

Info for SharedClassHelper id <n>: <message>

v Error messages are prefixed with:
Error for SharedClassHelper id <n>: <message>

Use the Java Helper API to obtain this output; see “Using the Java Helper API” on
page 172.

verboseAOT output
VerboseAOT provides output when compiled AOT code is being found or stored
in the cache.

When a cache is being populated, you might see the following:
Storing AOT code for ROMMethod 0x523B95C0 in shared cache... Succeeded.

When a populated cache is being accessed, you might see the following:
Finding AOT code for ROMMethod 0x524EAEB8 in shared cache... Succeeded.

AOT code is generated heuristically. You might not see any AOT code generated at
all for a small application.

printStats utility
The printStats utility is a suboption of -Xshareclasses, optionally taking a cache
name using name=<name>. It prints summary information on the cache specified
to standard error. Because it is a cache utility, the JVM displays the information on
the cache specified and then exits.

Here is a detailed description of what the output means:
baseAddress = 0x53133000
endAddress = 0x590E0000
allocPtr = 0x548B2F88

cache size = 100662924
free bytes = 63032784
ROMClass bytes = 32320692
AOT bytes = 4277036
Data bytes = 339667
Metadata bytes = 692745
Metadata % used = 1%

ROMClasses = 9576
AOT Methods = 3136

176 WebSphere Real Time V2 for Linux: User Guide

Classpaths = 5
URLs = 111
Tokens = 0
Stale classes = 0
% Stale classes = 0%

Cache is 37% full

baseAddress and endAddress
Give the boundary addresses of the shared memory area containing the
classes.

allocPtr
Is the address where ROMClass data is currently being allocated in the
cache.

cache size and free bytes
cache size shows the total size of the shared memory area in bytes, and
free bytes shows the free bytes remaining.

ROMClass bytes
Is the number of bytes of class data in the cache.

AOT bytes
Is the number of bytes of Ahead Of Time (AOT) compiled code in the
cache.

Data bytes
Is the number of bytes of non-class data stored by the JVM.

Metadata bytes
Is the number of bytes of data stored to describe the cached classes.

Metadata % used
Shows the proportion of metadata bytes to class bytes; this proportion
indicates how efficiently cache space is being used.

ROMClasses
Indicates the number of classes in the cache. The cache stores ROMClasses
(the class data itself, which is read-only) and it also stores information
about the location from which the classes were loaded. This information is
stored in different ways, depending on the Java SharedClassHelper API
(see “Using the Java Helper API” on page 172) used to store the classes

AOT methods
ROMClass methods can optionally be compiled and the AOT code stored
in the cache. This information shows the total number of methods in the
cache that have AOT code compiled for them. This number includes AOT
code for stale classes.

Classpaths, URLs, and Tokens
Indicates the number of classpaths, URLs, and tokens in the cache. Classes
stored from a SharedClassURLClasspathHelper are stored with a
Classpath; those stored using a SharedClassURLHelper are stored with a
URL; and those stored using a SharedClassTokenHelper are stored with a
Token. Most classloaders (including the bootstrap and application
classloaders) use a SharedClassURLClasspathHelper, so it is most common
to see Classpaths in the cache. The number of Classpaths, URLs, and
Tokens stored is determined by a number of factors. For example, every
time an element of a Classpath is updated (for example, a jar is rebuilt), a
new Classpath is added to the cache. Additionally, if "partitions" or

Chapter 8. Using diagnostic tools 177

"modification contexts" are used, these are associated with the Classpath,
URL, and Token, and one is stored for each unique combination of
partition and modification context.

Stale classes
Are classes that have been marked as "potentially stale" by the cache code,
because of an operating system update. See “Understanding dynamic
updates” on page 170.

% Stale classes
Is an indication of the proportion of classes in the cache that have become
stale.

printAllStats utility
The printAllStats utility is a suboption of -Xshareclasses, optionally taking a cache
name using name=<name>. This utility lists the cache contents in order. It aims to
give as much diagnostic information as possible and, because the output is listed
in chronological order, you can interpret it as an "audit trail" of cache updates.
Because it is a cache utility, the JVM displays the information on the cache
specified or the default cache and then exits.

Each JVM that connects to the cache receives a unique ID and each entry in the
output is preceded by a number indicating the JVM that wrote the data.

Classpaths

1: 0x2234FA6C CLASSPATH
C:\myJVM\sdk\jre\lib\vm.jar
C:\myJVM\sdk\jre\lib\core.jar
C:\myJVM\sdk\jre\lib\charsets.jar
C:\myJVM\sdk\jre\lib\graphics.jar
C:\myJVM\sdk\jre\lib\security.jar
C:\myJVM\sdk\jre\lib\ibmpkcs.jar
C:\myJVM\sdk\jre\lib\ibmorb.jar
C:\myJVM\sdk\jre\lib\ibmcfw.jar
C:\myJVM\sdk\jre\lib\ibmorbapi.jar
C:\myJVM\sdk\jre\lib\ibmjcefw.jar
C:\myJVM\sdk\jre\lib\ibmjgssprovider.jar
C:\myJVM\sdk\jre\lib\ibmjsseprovider2.jar
C:\myJVM\sdk\jre\lib\ibmjaaslm.jar
C:\myJVM\sdk\jre\lib\ibmjaasactivelm.jar
C:\myJVM\sdk\jre\lib\ibmcertpathprovider.jar
C:\myJVM\sdk\jre\lib\server.jar
C:\myJVM\sdk\jre\lib\xml.jar

This output indicates that JVM 1 caused a class path to be stored at
address 0x2234FA6C in the cache and that it contains 17 entries, which are
listed. If the class path was stored using a given partition or modification
context, this information is also displayed.

ROMClasses

1: 0x2234F7DC ROMCLASS: java/lang/Runnable at 0x213684A8
Index 1 in class path 0x2234FA6C

This output indicates that JVM 1 stored a class called java/lang/Runnable
in the cache. The metadata about the class is stored at address 0x2234F7DC
and the class itself is written to address 0x213684A8. It also indicates the
class path against which the class is stored and from which index in that
class path the class was loaded; in this case, the class path is the same
address as the one listed above. If a class is stale, it has !STALE! appended
to the entry. If the ROMClass was stored using a given partition or
modification context, this information is also displayed.

178 WebSphere Real Time V2 for Linux: User Guide

AOT methods
1: 0x540FBA6A AOT: loadConvert

for ROMClass java/util/Properties at 0x52345174

This output indicates that JVM 1 stored AOT compiled code for the
method loadConvert() in java/util/Properties. The ROMClass address is
the address of the ROMClass that contains the method that was compiled.
If an AOT method is stale, it has !STALE! appended to the entry.

URLs and Tokens
These are displayed in the same format as Classpaths. A URL is effectively
the same as a Classpath, but with only one entry. A Token is in a similar
format, but it is a meaningless String passed to the Java Helper API.

Debugging problems with shared classes
The following sections describe some of the situations you might encounter with
shared classes and also the tools that are available to assist in diagnosing problems.

Using shared classes trace
Use shared classes trace output only for debugging internal problems or for a very
detailed trace of activity in the shared classes code.

You enable shared classes trace using the j9shr trace component as a suboption of
-Xtrace. See “Tracing Java applications and the JVM” on page 118 for details. Five
levels of trace are provided, level 1 giving essential initialization and runtime
information, up to level 5, which is very detailed.

Shared classes trace output does not include trace from the port layer functions
that deal with memory-mapped files, shared memory and shared semaphores. It
also does not include trace from the Helper API natives. Port layer trace is enabled
using the j9prt trace component and trace for the Helper API natives is enabled
using the j9jcl trace component.

Why classes in the cache might not be found or stored
This quick guide helps you to diagnose why classes might not be being found or
stored in the cache as expected.

Why classes might not be found

The class is stale
As explained in “Understanding dynamic updates” on page 170, if a class
has been marked as “stale”, it is not returned by the cache.

A JVMTI agent is being used without a modification context
If a JVMTI agent is being used without a modification context, classes
cannot be found in the cache. The effect is to give the JVMTI agent an
opportunity to modify the bytecode when the classes are loaded from disk.
For more information, see “Dealing with runtime bytecode modification”
on page 167.

The Classpath entry being used is not yet confirmed by the
SharedClassURLClasspathHelper

Class path entries in the SharedClassURLClasspathHelper must be
“confirmed” before classes can be found for these entries. A class path
entry is confirmed by having a class stored for that entry. For more
information about confirmed entries, see the SharedClassHelper Javadoc
information.

Chapter 8. Using diagnostic tools 179

Why classes might not be stored

The cache is full
The cache is a finite size, determined when it is created. When it is full, it
cannot be expanded. When the verbose suboption is enabled a message is
printed when the cache reaches full capacity, to warn the user. The
printStats utility also displays the occupancy level of the cache, and can be
used to query the status of the cache.

The cache is opened read-only
When the readonly suboption is specified, no data is added to the cache.

The class does not exist on the file system
The class might have been generated or might come from a URL location
that is not a file.

The class loader does not extend java.net.URLClassLoader
For a class loader to share classes, it must either extend
java.net.URLClassLoader or implement the Java Helper API (see
“SharedClassHelper API” on page 174)

The class has been retransformed by JVMTI and cacheRetransformed has not
been specified

As described in “Dealing with runtime bytecode modification” on page
167, the option cacheRetransformed must be selected for retransformed
classes to be cached.

The class was generated by reflection or Hot Code Replace
These types of classes are never stored in the cache.

Why classes might not be found or stored

Safemode is being used
Classes are not found or stored in the cache in safemode. This behavior is
expected for shared classes. See “Using the safemode option” on page 169.

The cache is corrupted
In the unlikely event that the cache is corrupted, no classes can be found
or stored.

A SecurityManager is being used and the permissions have not been granted to
the class loader

SharedClassPermissions need to be granted to application class loaders so
that they can share classes when a SecurityManager is used. For more
information, see the SDK and Runtime User Guide for your platform.

Dealing with initialization problems
Shared classes initialization requires a number of operations to succeed. A failure
could have many potential reasons and it is difficult to provide detailed
information on the command line following an initialization failure. Some common
reasons for failure are listed here.

If you cannot see why initialization has failed from the command-line output, look
at level 1 trace for more information regarding the cause of the failure. The SDK
and Runtime User Guide for your platform provides detailed information about
operating system limitations, thus only a brief summary of potential reasons for
failure is provided here.

180 WebSphere Real Time V2 for Linux: User Guide

Writing data into the javasharedresources directory

To initialize any cache, data must be written into a javasharedresources directory,
which is created by the first JVM that needs it.

On Linux, AIX, z/OS, and i5/OS this directory is /tmp/javasharedresources. On
Windows it is C:\Documents and Settings\<username>\Local Settings\
Application Data\javasharedresources.

On Windows, the memory-mapped file is written here. On Linux, AIX, z/OS, and
i5/OS this directory is used only to store small amounts of metadata that identify
the semaphore and shared memory areas.

Problems writing to this directory are the most likely cause of initialization failure.
The default cache name is created with the username incorporated to prevent
clashes if different users try to share the same default cache, but all shared classes
users must have permissions to write to javasharedresources. The user running
the first JVM to share classes on a system must have permission to create the
javasharedresources directory.

By default on Linux, AIX, z/OS, and i5/OS caches are created with user-only
access, meaning that two users cannot share the same cache unless the
-Xshareclasses:groupAccess command-line option is used when the cache is
created. If user A creates a cache using -Xshareclasses:name=myCache and user B
also tries to run the same command line, a failure will occur, because user B does
not have permissions to access the existing cache called “myCache”. Caches can be
destroyed only by the user who created them, even if -Xshareclasses:groupAccess
is used.

Initializing a persistent cache

Persistent caches are the default on all platforms except for AIX and z/OS.

The following operations must succeed to initialize a persistent cache:

1) Creating the cache file
Persistent caches are a regular file created on disc. The main reasons for
failing to create the file are insufficient disc space and incorrect file
permissions.

2) Acquiring file locks
Concurrent access to persistent caches is controlled using operating system
file-locking. The main reason for failing to obtain the necessary file locks is
attempting to use a cache that is located on a remote networked file system
(such as an NFS or SMB mount). This is not supported.

3) Memory-mapping the file
The cache file is memory-mapped so that reading and writing to and from
it is a fast operation. The main reasons for failing to memory-map the file
are insufficient system memory or attempting to use a cache which is
located on a remote networked file system (such as an NFS or SMB
mount). This is not supported.

Initializing a non-persistent cache

Non-persistent caches are the default on AIX and z/OS.

Chapter 8. Using diagnostic tools 181

The following operations must succeed to initialize a non-persistent cache:

1) Create a shared memory area
Possible problems depend on your platform.

Linux, AIX, z/OS, and i5/OS
The SHMMAX operating system environment variable by default
is set quite low. SHMMAX limits the size of shared memory
segment that can be allocated. If a cache size greater than
SHMMAX is requested, the JVM attempts to allocate SHMMAX
and outputs a message indicating that SHMMAX should be
increased. For this reason, the default cache size is 16 MB.

2) Create a shared semaphore
Shared semaphores are created in the javasharedresources directory. You
must have write access to this directory.

3) Write metadata
Metadata is written to the javasharedresources directory. You must have
write access to this directory.

If you are experiencing considerable initialization problems, try a hard reset:
1. Run java -Xshareclasses:destroyAll to remove all known memory areas and

semaphores. On a Linux, AIX, or z/OS system, run this command as root, or as
a user with *ALLOBJ authority on i5/OS.

2. Delete the javasharedresources directory and all of its contents.
3. On Linux, AIX, z/OS, or i5/OS the memory areas and semaphores created by

the JVM might not have been removed using -Xshareclasses:destroyAll. This
problem is addressed the next time you start the JVM. If the JVM starts and the
javasharedresources directory does not exist, an automated cleanup is
triggered and any remaining shared memory areas that are shared class caches
are destroyed. Run the JVM with -Xshareclasses as root on Linux, AIX, or
z/OS or as a user with *ALLOBJ authority on i5/OS, to ensure that the system
is completely reset. The JVM then automatically recreates the
javasharedresources directory.

Dealing with verification problems
Verification problems (typically seen as java.lang.VerifyErrors) are potentially
caused by the cache returning incorrect class bytes.

This problem should not occur under typical usage, but there are two situations in
which it could happen:
v The classloader is using a SharedClassTokenHelper and the classes in the cache

are out-of-date (dynamic updates are not supported with a
SharedClassTokenHelper).

v Runtime bytecode modification is being used that is either not fully predictable
in the modifications it does, or it is sharing a cache with another JVM that is
doing different (or no) modifications. Regardless of the reason for the
VerifyError, running in safemode (see “Using the safemode option” on page 169)
should show if any bytecode in the cache is inconsistent with what the JVM is
expecting. When you have determined the cause of the problem, destroy the
cache, correct the cause of the problem, and try again.

Dealing with cache problems
The following list describes possible cache problems.

182 WebSphere Real Time V2 for Linux: User Guide

Cache is full
A full cache is not a problem; it just means that you have reached the limit
of data that you can share. Nothing can be added or removed from that
cache and so, if it contains a lot of out-of-date classes or classes that are
not being used, you must destroy the cache and create a new one.

Cache is corrupt
In the unlikely event that a cache is corrupt, no classes can be added or
read from the cache and a message is output to stderr. If the JVM detects
that it is attaching to a corrupted cache, it will attempt to destroy the cache
automatically. If the JVM cannot re-create the cache, it will continue to start
only if -Xshareclasses:nonfatal is specified, otherwise it will exit. If a cache
is corrupted during normal operation, all JVMs output the message and
are forced to load all subsequent classes locally (not into the cache). The
cache is designed to be resistant to crashes, so, if a JVM crash occurs
during a cache update, the crash should not cause data to be corrupted.

Could not create the Java virtual machine message from utilities
This message does not mean that a failure has occurred. Because the cache
utilities currently use the JVM launcher and they do not start a JVM, this
message is always produced by the launcher after a utility has run.
Because the JNI return code from the JVM indicates that a JVM did not
start, it is an unavoidable message.

-Xscmx is not setting the cache size
You can set the cache size only when the cache is created because the size
is fixed. Therefore, -Xscmx is ignored unless a new cache is being created.
It does not imply that the size of an existing cache can be changed using
the parameter.

Class sharing with OSGi ClassLoading framework
Eclipse releases after 3.0 use the OSGi ClassLoading framework, which cannot
automatically share classes. A Class Sharing adapter has been written specifically
for use with OSGi, which allows OSGi classloaders to access the class cache.

Using the JVMTI
JVMTI is a two-way interface that allows communication between the JVM and a
native agent. It replaces the JVMDI and JVMPI interfaces.

JVMTI allows third parties to develop debugging, profiling, and monitoring tools
for the JVM. The interface contains mechanisms for the agent to notify the JVM
about the kinds of information it requires. The interface also provides a means of
receiving the relevant notifications. Several agents can be attached to a JVM at any
one time. A number of tools are based on this interface, such as Hyades, JProfiler,
and Ariadna. These are third-party tools, therefore IBM cannot make any
guarantees or recommendations regarding them. IBM does provide a simple
profiling agent based on this interface, HPROF.

JVMTI agents can be loaded at startup using short or long forms of the
command-line option:
-agentlib:<agent-lib-name>=<options>

or
-agentpath:<path-to-agent>=<options>

For example:

Chapter 8. Using diagnostic tools 183

-agentlib:hprof=<options>

assumes that a folder containing hprof.dll is on the library path, or
-agentpath:C:\sdk\jre\bin\hprof.dll=<options>

For more information about JVMTI, see http://java.sun.com/javase/6/docs/
technotes/guides/jvmti/.

For advice on porting JVMPI-based profilers to JVMTI, see http://java.sun.com/
developer/technicalArticles/Programming/jvmpitransition.

For a guide about writing a JVMTI agent, see http://java.sun.com/developer/
technicalArticles/Programming/jvmti.

IBM JVMTI extensions
The IBM SDK provides extensions to the JVMTI. The sample shows you how to
write a simple JVMTI agent that uses these extensions.

The IBM SDK extensions to JVMTI allow a JVMTI agent do the following tasks:
v Modify a dump.
v Modify a trace.
v Modify the logging configuration of the JVM.
v Initiate a JVM dump.

The definitions you need when you write a JVMTI agent are provided in the
header files jvmti.h and ibmjvmti.h. These files are in sdk/include.

The sample JVMTI agent consists of two functions:
1. Agent_OnLoad()
2. DumpStartCallback()

Agent_OnLoad()

This function is called by the JVM when the agent is loaded at JVM startup, which
allows the JVMTI agent to modify JVM behavior before initialization is complete.
The sample agent obtains access to the JVMTI interface using the JNI Invocation
API function GetEnv(). The agent calls the APIs GetExtensionEvents() and
GetExtensionFunctions() to find the JVMTI extensions supported by the JVM.
These APIs provide access to the list of extensions available in the
jvmtiExtensionEventInfo and jvmtiExtensionFunctionInfo structures. The sample
uses an extension event and an extension function in the following way:

The sample JVMTI agent searches for the extension event VmDumpStart in the list
of jvmtiExtensionEventInfo structures, using the identifier COM_IBM_VM_DUMP_START
provided in ibmjvmti.h. When the event is found, the JVMTI agent calls the JVMTI
interface SetExtensionEventCallback() to enable the event, providing a function
DumpStartCallback() that is called when the event is triggered.

Next, the sample JVMTI agent searches for the extension function SetVMDump in
the list of jvmtiExtensionFunctionInfo structures, using the identifier
COM_IBM_SET_VM_DUMP provided in ibmjvmti.h. The JVMTI agent calls the function
using the jvmtiExtensionFunction pointer to set a JVM dump option
java:events=thrstart. This option requests the JVM to trigger a javadump every
time a VM thread is started.

184 WebSphere Real Time V2 for Linux: User Guide

http://java.sun.com/javase/6/docs/technotes/guides/jvmti/
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/
http://java.sun.com/developer/technicalArticles/Programming/jvmpitransition
http://java.sun.com/developer/technicalArticles/Programming/jvmpitransition
http://java.sun.com/developer/technicalArticles/Programming/jvmti
http://java.sun.com/developer/technicalArticles/Programming/jvmti

DumpStartCallback()

This callback function issues a message when the associated extension event is
called. In the sample code, DumpStartCallback() is used when the VmDumpStart
event is triggered.

Compiling and running the sample JVMTI agent

Use this command to build the sample JVMTI agent on Windows:
cl /I<SDK_path>\include /MD /FetiSample.dll tiSample.c /link /DLL

where <SDK_path> is the path to your SDK installation.

Use this command to build the sample JVMTI agent on Linux:
gcc -I<SDK_path>/include -o libtiSample.so -shared tiSample.c

where <SDK_path> is the path to your SDK installation.

To run the sample JVMTI agent, use the command:
java -agentlib:tiSample -version

When the sample JVMTI agent loads, messages are generated. When the JVMTI
agent initiates a javadump, the message JVMDUMP010 is issued.

Sample JVMTI agent
A sample JVMTI agent, written in C/C++, using the IBM JVMTI extensions.
/*
* tiSample.c
*
* Sample JVMTI agent to demonstratr the IBM JVMTI dump extensions
*/

#include "jvmti.h"
#include "ibmjvmti.h"

/* Forward declarations for JVMTI callback functions */
void JNICALL VMInitCallback(jvmtiEnv *jvmti_env, JNIEnv* jni_env, jthread thread);
void JNICALL DumpStartCallback(jvmtiEnv *jvmti_env, char* label, char* event, char* detail, ...);

/*
* Agent_Onload()
*
* JVMTI agent initialisation function, invoked as agent is loaded by the JVM
*/
JNIEXPORT jint JNICALL Agent_OnLoad(JavaVM *jvm, char *options, void *reserved) {

jvmtiEnv *jvmti = NULL;
jvmtiError rc;
jint extensionEventCount = 0;
jvmtiExtensionEventInfo *extensionEvents = NULL;
jint extensionFunctionCount = 0;
jvmtiExtensionFunctionInfo *extensionFunctions = NULL;
int i = 0, j = 0;

printf("tiSample: Loading JVMTI sample agent\n");

/* Get access to JVMTI */
(*jvm)->GetEnv(jvm, (void **)&jvmti, JVMTI_VERSION_1_0);

/* Look up all the JVMTI extension events and functions */

Chapter 8. Using diagnostic tools 185

(*jvmti)->GetExtensionEvents(jvmti, &extensionEventCount, &extensionEvents);
(*jvmti)->GetExtensionFunctions(jvmti, &extensionFunctionCount, &extensionFunctions);

printf("tiSample: Found %i JVMTI extension events, %i extension functions\n", extensionEventCount, extensionFunctionCount);

/* Find the JVMTI extension event we want */
while (i++ < extensionEvenCount) {

if (strcmp(extensionEvents->id, COM_IBM_VM_DUMP_START) == 0) {
/* Found the dump start extension event, now set up a callback for it */
rc = (*jvmti)->SetExtensionEventCallback(jvmti, extensionEvents->extension_event_index, &DumpStartCallback);
printf("tiSample: Setting JVMTI event callback %s, rc=%i\n", COM_IBM_VM_DUMP_START, rc);
break;

}
extensionEvents++; /* move on to the next extension event */

}

/* Find the JVMTI extension function we want */
while (j++ < extensionFunctionCount) {

jvmtiExtensionFunction function = extensionFunctions->func;

if (strcmp(extensionFunctions->id, COM_IBM_SET_VM_DUMP) == 0) {
/* Found the set dump extension function, now set a dump option to generate javadumps on thread starts */
rc = function(jvmti, "java:events=thrstart");
printf("tiSample: Calling JVMTI extension %s, rc=%i\n", COM_IBM_SET_VM_DUMP, rc);
break;

}
extensionFunctions++; /* move on to the next extension function */

}

return JNI_OK;

}

/*
* DumpStartCallback()
* JVMTI callback for dump start event (IBM JVMTI extension) */
void JNICALL
DumpStartCallback(jvmtiEnv *jvmti_env, char* label, char* event, char* detail, ...) {

printf("tiSample: Received JVMTI event callback, for event %s\n", event);
}

IBM JVMTI extensions - API reference
Reference information for the IBM SDK extensions to the JVMTI.

Setting JVM dump options

To set a JVM dump option use:
jvmtiError jvmtiSetVmDump(jvmtiEnv* jvmti_env, char* option)

The dump option is passed in as an ASCII character string. Use the same syntax as
the -Xdump command-line option, with the initial -Xdump: omitted. See “Using
the -Xdump option” on page 71.

When dumps are in progress, the dump configuration is locked, and calls to
jvmtiSetVmDump() fail with a return value of JVMTI_ERROR_NOT_AVAILABLE.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

option: The JVM dump option string.

186 WebSphere Real Time V2 for Linux: User Guide

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: The parameter option is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: The dump configuration is locked because a
dump is in progress.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The parameter option contains an invalid
-Xdump string.

Note: On z/OS, you might need to convert the option string from EBCDIC to
ASCII before using this JVMTI extension function.

Querying JVM dump options

To query the current JVM dump options, use:
jvmtiError jvmtiQueryVmDump(jvmtiEnv* jvmti_env, jint buffer_size, void* options_buffer, jint* data_size_ptr)

This extension returns a set of dump option specifications as ASCII strings. The
syntax of the option string is the same as the -Xdump command-line option, with
the initial -Xdump: omitted. See “Using the -Xdump option” on page 71. The
option strings are separated by newline characters. If the memory buffer is too
small to contain the current JVM dump option strings, you can expect the
following results:
v The error message JVMTI_ERROR_ILLEGAL_ARGUMENT is returned.
v The variable for data_size_ptr is set to the required buffer size.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

buffer_size: The size of the supplied memory buffer in bytes.

options_buffer: A pointer to the supplied memory buffer.

data_size_ptr: A pointer to a variable, used to return the total size of the
option strings.

Returns:
JVMTI_ERROR_NONE: Success

JVMTI_ERROR_NULL_POINTER: The options_buffer or data_size_ptr
parameters are null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: The dump configuration is locked because a
dump is in progress.

Chapter 8. Using diagnostic tools 187

JVMTI_ERROR_ILLEGAL_ARGUMENT: The supplied memory buffer in
options_buffer is too small.

Resetting JVM dump options

To reset the JVM dump options to the values at JVM initialization, use:
jvmtiError jvmtiResetVmDump(jvmtiEnv* jvmti_env)

Parameters:
jvmti_env: The JVMTI environment pointer.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: The dump configuration is locked because a
dump is in progress.

Triggering a JVM dump

To trigger a JVM dump, use:
jvmtiError jvmtiTriggerVmDump(jvmtiEnv* jvmti_env, char* option)

Choose the type of dump required by specifying an ASCII string that contains one
of the supported dump agent types. See “Dump agents” on page 74. JVMTI events
are provided at the start and end of the dump.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

option: A pointer to the dump type string, which can be one of the
following types:
v stack
v java
v system
v console
v tool
v heap
v snap
v ceedump (z/OS only)

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: The option parameter is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

188 WebSphere Real Time V2 for Linux: User Guide

JVMTI_ERROR_NOT_AVAILABLE: The dump configuration is locked because a
dump is in progress.

Note: On z/OS, you might need to convert the option string from EBCDIC to
ASCII before using this JVMTI extension function.

Setting JVM trace options

To set a JVM trace option, use:
jvmtiError jvmtiSetVmTrace(jvmtiEnv* jvmti_env, char* option)

The trace option is passed in as an ASCII character string. Use the same syntax as
the -Xtrace command-line option, with the initial -Xtrace: omitted. See “Detailed
descriptions of trace options” on page 123.

Parameters:
jvmti_env: JVMTI environment pointer.

option: Enter the JVM trace option string.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: The option parameter is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The option parameter contains an invalid
-Xtrace string.

Note: On z/OS, you might need to convert the option string from EBCDIC to
ASCII before using this JVMTI extension function.

JVMTI event function - start dump

The following JVMTI event function is called when a JVM dump starts.
void JNICALL
VMDumpStart(jvmtiEnv *jvmti_env, JNIEnv* jni_env, char* label, char* event, char* detail)

The event function provides the dump file name and the name of the JVM event
that triggered the dump. For more information about dump events, see “Dump
events” on page 76.

Parameters:
jvmti_env: JVMTI environment pointer.

jni_env: JNI environment pointer for the thread on which the event
occurred.

label: The dump file name, including directory path.

event: The extension event name, such as com.ibm.VmDumpStart.

detail: The dump event name.

Returns:
None

Chapter 8. Using diagnostic tools 189

JVMTI event function - end dump

The following JVMTI event function is called when a JVM dump ends.
void JNICALL
VMDumpEnd(jvmtiEnv *jvmti_env, JNIEnv* jni_env, char* label, char* event, char* detail)

This event function provides the dump file name and the name of the JVM event
that triggered the dump. For more information about dump events, see “Dump
events” on page 76.

Parameters:
jvmti_env: JVMTI environment pointer.

jni_env: JNI environment pointer for the thread on which the event
occurred.

label: The dump file name, including directory path.

event: The extension event name, such as com.ibm.VmDumpStart.

detail: The dump event name.

Returns:
None

Using the Diagnostic Tool Framework for Java
The Diagnostic Tool Framework for Java (DTFJ) is a Java application programming
interface (API) from IBM used to support the building of Java diagnostics tools.
DTFJ works with data from a system dump or a Javadump.

To work with a system dump, the dump must be processed by the jextract tool; see
“Using the dump viewer” on page 104. The jextract tool produces metadata from
the dump, which allows the internal structure of the JVM to be analyzed. You must
run jextract on the system that produced the dump.

To work with a Javadump, no additional processing is required.

The DTFJ API helps diagnostics tools access the following information:
v Memory locations stored in the dump (System dumps only)
v Relationships between memory locations and Java internals (System dumps

only)
v Java threads running in the JVM
v Native threads held in the dump (System dumps only)
v Java classes and their classloaders that were present
v Java objects that were present in the heap (System dumps only)
v Java monitors and the objects and threads they are associated with
v Details of the workstation on which the dump was produced (System dumps

only)
v Details of the Java version that was being used
v The command line that launched the JVM

If your DTFJ application requests information that is not available in the
Javadump, the API will return null or throw a DataUnavailable exception. You
might need to adapt DTFJ applications written to process system dumps to make
them work with Javadumps.

190 WebSphere Real Time V2 for Linux: User Guide

Using the DTFJ interface
To create applications that use DTFJ, you must use the DTFJ interface.
Implementations of this interface have been written that work with WebSphere
Real Time for Linux.

Figure 3 on page 193 illustrates the DTFJ interface. The starting point for working
with a dump is to obtain an Image instance by using the ImageFactory class
supplied with the concrete implementation of the API.

Working with a system dump

The following example shows how to work with a system dump.
import java.io.File;
import java.util.Iterator;
import java.io.IOException;

import com.ibm.dtfj.image.CorruptData;
import com.ibm.dtfj.image.Image;
import com.ibm.dtfj.image.ImageFactory;

public class DTFJEX1 {
public static void main(String[] args) {

Image image = null;
if (args.length > 0) {

File f = new File(args[0]);
try {

Class factoryClass = Class
.forName("com.ibm.dtfj.image.j9.ImageFactory");

ImageFactory factory = (ImageFactory) factoryClass
.newInstance();

image = factory.getImage(f);
} catch (ClassNotFoundException e) {

System.err.println("Could not find DTFJ factory class");
e.printStackTrace(System.err);

} catch (IllegalAccessException e) {
System.err.println("IllegalAccessException for DTFJ factory class");
e.printStackTrace(System.err);

} catch (InstantiationException e) {
System.err.println("Could not instantiate DTFJ factory class");
e.printStackTrace(System.err);

} catch (IOException e) {
System.err.println("Could not find/use required file(s)");
e.printStackTrace(System.err);

}
} else {

System.err.println("No filename specified");
}
if (image == null) {

return;
}

Iterator asIt = image.getAddressSpaces();
int count = 0;
while (asIt.hasNext()) {

Object tempObj = asIt.next();
if (tempObj instanceof CorruptData) {

System.err.println("Address Space object is corrupt: "
+ (CorruptData) tempObj);

} else {
count++;

}

Chapter 8. Using diagnostic tools 191

}
System.out.println("The number of address spaces is: " + count);

}
}

In this example, the only section of code that ties the dump to a particular
implementation of DTFJ is the generation of the factory class. Change the factory
to use a different implementation.

The getImage() methods in ImageFactory expect one file, the dumpfilename.zip file
produced by jextract (see see “Using the dump viewer” on page 104). If the
getImage() methods are called with two files, they are interpreted as the dump
itself and the .xml metadata file. If there is a problem with the file specified, an
IOException is thrown by getImage() and can be caught and (in the example
above) an appropriate message issued. If a missing file was passed to the above
example, the following output is produced:

Could not find/use required file(s)
java.io.FileNotFoundException: core_file.xml (The system cannot find the file specified.)

at java.io.FileInputStream.open(Native Method)
at java.io.FileInputStream.<init>(FileInputStream.java:135)
at com.ibm.dtfj.image.j9.ImageFactory.getImage(ImageFactory.java:47)
at com.ibm.dtfj.image.j9.ImageFactory.getImage(ImageFactory.java:35)
at DTFJEX1.main(DTFJEX1.java:23)

In the case above, the DTFJ implementation is expecting a dump file to exist.
Different errors are caught if the file existed but was not recognized as a valid
dump file.

Working with a Javadump

To work with a Javadump, change the factory class to
com.ibm.dtfj.image.javacore.JCImageFactory and pass the Javadump file to the
getImage() method.
import java.io.File;
import java.util.Iterator;
import java.io.IOException;

import com.ibm.dtfj.image.CorruptData;
import com.ibm.dtfj.image.Image;
import com.ibm.dtfj.image.ImageFactory;

public class DTFJEX2 {
public static void main(String[] args) {

Image image=null;

if (args.length > 0) {
File javacoreFile = new File(args[0]);

try {
Class factoryClass = Class.forName("com.ibm.dtfj.image.javacore.JCImageFactory");
ImageFactory factory = (ImageFactory) factoryClass.newInstance();
image = factory.getImage(javacoreFile);

} catch

The rest of the example remains the same.

After you have obtained an Image instance, you can begin analyzing the dump.
The Image instance is the second instance in the class hierarchy for DTFJ
illustrated by the following diagram:

192 WebSphere Real Time V2 for Linux: User Guide

The hierarchy displays some major points of DTFJ. Firstly, there is a separation
between the Image (the dump, a sequence of bytes with different contents on
different platforms) and the Java internal knowledge.

Some things to note from the diagram:

ImageFactory

CorruptData
PP

PP

P

PP

P

P

P

S

SS

S

S

S

Image

ImageAddressSpace

ImageProcess

ManagedRuntime

JavaRuntime

JavaClassLoader

JavaClass

JavaField

JavaMethod

JavaMember

JavaReference JavaHeap

JavaObject

ImageRegister

ImageThread

ImageStackFrame

JavaThread

JavaStackFrame

JavaLocation

ImageModule

ImageSymbol

JavaMonitor

runtime Package

java Package

All iterators can return
CorruptData objects

Returns Image Section
Returns Image Pointer
Inheritance
Returns
Iterator

KEY

S
P

Figure 3. DTFJ interface diagram

Chapter 8. Using diagnostic tools 193

v The DTFJ interface is separated into two parts: classes with names that start with
Image and classes with names that start with Java.

v Image and Java classes are linked using a ManagedRuntime (which is extended
by JavaRuntime).

v An Image object contains one ImageAddressSpace object.
v An ImageAddressSpace object contains one ImageProcess object.
v Conceptually, you can apply the Image model to any program running with the

ImageProcess, although for the purposes of this document discussion is limited
to the IBM JVM implementations.

v There is a link from a JavaThread object to its corresponding ImageThread
object. Use this link to find out about native code associated with a Java thread,
for example JNI functions that have been called from Java.

v If a JavaThread was not running Java code when the dump was taken, the
JavaThread object will have no JavaStackFrame objects. In these cases, use the
link to the corresponding ImageThread object to find out what native code was
running in that thread. This is typically the case with the JIT compilation thread
and Garbage Collection threads.

DTFJ example application
This example is a fully working DTFJ application.

For clarity, this example does not perform full error checking when constructing
the main Image object and does not perform CorruptData handling in all of the
iterators. In a production environment, you use the techniques illustrated in the
example in the “Using the DTFJ interface” on page 191.

In this example, the program iterates through every available Java thread and
checks whether it is equal to any of the available image threads. When they are
found to be equal, the program declares that it has, in this case, "Found a match".

The example demonstrates:
v How to iterate down through the class hierarchy.
v How to handle CorruptData objects from the iterators.
v The use of the .equals method for testing equality between objects.

import java.io.File;
import java.util.Iterator;
import com.ibm.dtfj.image.CorruptData;
import com.ibm.dtfj.image.CorruptDataException;
import com.ibm.dtfj.image.DataUnavailable;
import com.ibm.dtfj.image.Image;
import com.ibm.dtfj.image.ImageAddressSpace;
import com.ibm.dtfj.image.ImageFactory;
import com.ibm.dtfj.image.ImageProcess;
import com.ibm.dtfj.java.JavaRuntime;
import com.ibm.dtfj.java.JavaThread;
import com.ibm.dtfj.image.ImageThread;

public class DTFJEX2
{

public static void main(String[] args)
{

Image image = null;
if (args.length > 0)
{

File f = new File(args[0]);
try
{

194 WebSphere Real Time V2 for Linux: User Guide

Class factoryClass = Class
.forName("com.ibm.dtfj.image.j9.ImageFactory");

ImageFactory factory = (ImageFactory) factoryClass.newInstance();
image = factory.getImage(f);

}
catch (Exception ex)
{ /*

* Should use the error handling as shown in DTFJEX1.
*/
System.err.println("Error in DTFJEX2");
ex.printStackTrace(System.err);

}
}
else
{

System.err.println("No filename specified");
}

if (null == image)
{

return;
}

MatchingThreads(image);
}

public static void MatchingThreads(Image image)
{

ImageThread imgThread = null;

Iterator asIt = image.getAddressSpaces();
while (asIt.hasNext())
{

System.out.println("Found ImageAddressSpace...");

ImageAddressSpace as = (ImageAddressSpace) asIt.next();

Iterator prIt = as.getProcesses();

while (prIt.hasNext())
{

System.out.println("Found ImageProcess...");

ImageProcess process = (ImageProcess) prIt.next();

Iterator runTimesIt = process.getRuntimes();
while (runTimesIt.hasNext())
{

System.out.println("Found Runtime...");
JavaRuntime javaRT = (JavaRuntime) runTimesIt.next();

Iterator javaThreadIt = javaRT.getThreads();

while (javaThreadIt.hasNext())
{

Object tempObj = javaThreadIt.next();
/*
* Should use CorruptData handling for all iterators
*/
if (tempObj instanceof CorruptData)
{

System.out.println("We have some corrupt data");
}
else
{

JavaThread javaThread = (JavaThread) tempObj;
System.out.println("Found JavaThread...");

Chapter 8. Using diagnostic tools 195

try
{

imgThread = (ImageThread) javaThread.getImageThread();

// Now we have a Java thread we can iterator
// through the image threads
Iterator imgThreadIt = process.getThreads();

while (imgThreadIt.hasNext())
{

ImageThread imgThread2 = (ImageThread) imgThreadIt
.next();

if (imgThread.equals(imgThread2))
{

System.out.println("Found a match:");
System.out.println("\tjavaThread "

+ javaThread.getName()
+ " is the same as " + imgThread2.getID());

}
}

}
catch (CorruptDataException e)
{

System.err.println("ImageThread was corrupt: "
+ e.getMessage());

}
catch (DataUnavailable e)
{

System.out.println("DataUnavailable: "
+ e.getMessage());

}
}

}
}

}
}

}
}

Many DTFJ applications will follow similar models.

Using the IBM Monitoring and Diagnostic Tools for Java - Health
Center

The IBM Monitoring and Diagnostic Tools for Java - Health Center is a diagnostic
tool for monitoring the status of a running Java Virtual Machine (JVM).

Introduction
The IBM Monitoring and Diagnostic Tools for Java - Health Center is a diagnostic
tool for monitoring the status of a running Java Virtual Machine (JVM). The Heath
Center uses a small amount of processor time and memory, and can open some log
and trace files for analysis.

The tool is provided in two parts:
v The Health Center agent that collects data from a running application. To

download the agent, see: “Installing the Health Center agent” on page 200.
v An Eclipse-based client that connects to the agent. The client interprets the data

and provides recommendations to improve the performance of the monitored
application.

196 WebSphere Real Time V2 for Linux: User Guide

The Health Center can be used to monitor Java applications, where the
applications use one of the following JVMs:
v Java 6 SR1 and later
v Java 5.0 SR8 and later
v WebSphere Real Time for Linux V2 SR2 with APAR IZ61672 and later service

refreshes

The Health Center allows monitoring of applications using WebSphere Real Time
for Linux. However, monitoring production environments based on WebSphere
Real Time for Linux is not recommended. The reason is that trace output
functionality causes Health Center to generate log files that might consume
unlimited amounts of disk space.

The Health Center is provided as an IBM Support Assistant (ISA) add-on. For
information about installing and getting started with the add-on, see:
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/.

When the Health Center client starts up, you initially see a connection wizard. You
can then:
v After installing the Health Center agent and enabling a Java application for

monitoring, make a connection to the running application. See “Monitoring a
running Java application” on page 199 for more information.

v Open a log file from disk by canceling the wizard. See “Opening files from disk”
on page 208 for more information.

The Health Center client is split into subsystems, each representing a component of
the JVM. The following subsystems are available:
v Classes: Information about classes being loaded
v Environment: Details of the configuration and system of the monitored

application
v Garbage collection: Information about the Java heap and pause times
v I/O: Information about I/O activities that take place.
v Locking: Information about contention on inflated locks
v Memory: Information about the native memory usage
v Profiling: Provides a sampling profile of Java methods including call paths
v WebSphere Real Time for Linux: Information about real-time applications

Subsystems are represented as Eclipse perspectives. The first subsystem you see is
the Status perspective, listing the subsystems and their overall status. When you
connect to a running application or open a file (see “Opening files from disk” on
page 208 for more information), subsystems with data available become links and
any recommendations are displayed. The Health Center updates the displayed data
and recommendations every 10 seconds. Switch to the subsystem perspectives
using the links or the toolbar icons. You can return to the Status perspective using
the furthest left toolbar icon.

You can send bug reports, feature requests, and feedback through your IBM
representative, or you can post feedback or ask questions on the Health Center
forum: http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461.

For more information about Health Center, including late-breaking news, see:
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
release_notes.html.

Chapter 8. Using diagnostic tools 197

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/release_notes.html
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/release_notes.html

Platform requirements
The Health Center client and Health Center agent have unique platform
requirements. The functionality available with the agent depends on the level of
Java Runtime Environment (JRE) you are using.

Platform requirements for the client

The Health Center client requires either the Microsoft® Windows or Linux x86
operating system using the supplied JRE. The client is Eclipse RCP-based; the
minimum operating system requirements for the client are the same as the Eclipse
RCP project, see http://www.eclipse.org/documentation/.

Platform requirements for the agent

The application that you want to monitor requires a minimum level of JRE with a
Health Center agent installed. Later levels of JRE provide more Health Center
function; the table shows at which JRE service refresh each function becomes
available.

Some JRE levels come with an agent installed by default. To enable more function,
install a later, updated, agent. See “Installing the Health Center agent” on page 200
for more information. The level of function provided by default and updated
agents is described in the following table.

To use Health Center on a production system, run Java 5 JRE SR10 or later, or run
Java 6 JRE SR5 or later.

Using the Health Center in production environments

The Health Center has a minimal affect on the system being monitored. However,
it is not suitable for production use on Java 5 JRE before SR10, or Java 6 JRE before
SR5.

Java
version

Function with
default agent

Function with
updated agent

Suitable
for
production
use

Command-line options to
enable agent

Java 5 SR8 No agent
included

Profiling, Garbage
collection,
locking, classes,
environment,
memory

No -agentlib:healthcenter
-Xtrace:output=perfmon.%p.out

Java 5 SR9 Profiling,
Garbage
collection,
locking

Profiling, Garbage
collection,
locking, classes,
environment,
memory

No -agentlib:healthcenter
-Xtrace:output=perfmon.%p.out

Java 5 SR10
or later

Profiling,
Garbage
collection,
locking, classes,
environment

Profiling, Garbage
collection,
locking, classes,
environment,
memory, large
object allocation,
IO

Yes -Xhealthcenter

198 WebSphere Real Time V2 for Linux: User Guide

http://www.eclipse.org/documentation/

Java
version

Function with
default agent

Function with
updated agent

Suitable
for
production
use

Command-line options to
enable agent

Java 6 SR1 No agent
included

Profiling, Garbage
collection,
locking, classes,
environment,
memory

No -agentlib:healthcenter
-Xtrace:output=perfmon.%p.out

Java 6 SR2 No agent
included

Profiling, Garbage
collection,
locking, classes,
environment,
memory

No -agentlib:healthcenter
-Xtrace:output=perfmon.%p.out

Java 6 SR3 Profiling,
Garbage
collection,
locking, classes

Profiling, Garbage
collection,
locking, classes,
environment,
memory

No -agentlib:healthcenter
-Xtrace:output=perfmon.%p.out

Java 6 SR4 Profiling,
Garbage
collection,
locking, classes

Profiling, Garbage
collection,
locking, classes,
environment,
memory

No -agentlib:healthcenter
-Xtrace:output=perfmon.%p.out

Java 6 SR5
or later

Profiling,
Garbage
collection,
locking, classes,
environment

Profiling, Garbage
collection,
locking, classes,
environment,
memory, large
object allocation,
IO

Yes -Xhealthcenter

WebSphere
Real Time
for Linux
V2 SR2 with
APAR
IZ61672

Profiling,
Garbage
collection,
locking, classes,
environment

Profiling, Garbage
collection,
locking, classes,
environment,
memory

No -agentlib:healthcenter
-Xtrace:output=perfmon.%p.out

WebSphere
Real Time
for Linux
V2 SR3 or
later service
refreshes

Profiling,
Garbage
collection,
locking, classes,
environment,
WebSphere Real
Time

Profiling, Garbage
collection,
locking, classes,
environment,
memory,
WebSphere Real
Time, IO

Yes -Xhealthcenter

Monitoring a running Java application
Use the Health Center to connect to, and monitor, a Java application.

To monitor a running Java application, you must:
1. Install the Health Center agent into the IBM Java Virtual Machine (JVM) for the

Java application. See “Installing the Health Center agent” on page 200
2. Start the Java application with the agent enabled. See “Starting a Java

application with the Health Center agent enabled” on page 201 for more
information.

Chapter 8. Using diagnostic tools 199

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

||

3. Connect to the Java application using the Health Center client. See “Connecting
to a Java application using the Health Center client” on page 202 for more
information.

To learn more about the data that the Health Center client displays, see “Data
available on connection to a running Java application” on page 206.

Installing the Health Center agent
Download and install the correct agent package for the Java version you are using.

Procedure

Some IBM Java Runtime Environments (JREs) already have a Health Center agent
installed. However, you should still install the agent using this procedure to ensure
that the latest updates are included.
1. Download the agent package by clicking the link corresponding to the Java

version you are running:

Note: This might not be the same as the operating system you are running. For
example, you might be running a 32-bit Java on a Windows 64-bit system; in
this case you should download the Windows 32-bit agent package.
v Windows x86 32-bit
v Windows x86 64-bit
v Linux x86 32-bit
v Linux x86 64-bit
v Linux s390 31-bit
v Linux s390 64-bit
v Linux ppc 32-bit
v Linux ppc 64-bit
v AIX ppc 32-bit
v AIX ppc 64-bit
v z/OS 31-bit
v z/OS 64-bit

2. Install the agent.
v Installing on Microsoft Windows, AIX and Linux:

a. You must download and extract the agent package into a specific
directory of the JRE that you are using to start your application. This
directory is the parent directory of the jre directory. For example, on
Microsoft Windows, if your JRE is in the C:\Program
Files\IBM\Java60\jre directory, extract the contents of the Windows x86
32-bit agent package into C:\Program Files\IBM\Java60

b. When extracted, you see a healthcenter.jar file in the jre\lib\ext
directory. Using the example in step a., your healthcenter.jar is in
C:\Program Files\IBM\Java60\jre\lib\ext.

v Installing on z/OS:
a. Unpack the z/OS agent package (a pax file) into the SDK directory using

the command pax -ppx -rf. For example:
W0 /u/user/J5.0: pax -ppx -rf ../mz31.pax

The agent files are unpacked into the Java SDK directory. For example,
for Java 5.0, this directory is similar to /u/user/J5.0.

200 WebSphere Real Time V2 for Linux: User Guide

agents/wi32.zip
agents/wa64.zip
agents/xi32.zip
agents/xa64.zip
agents/xz31.zip
agents/xz64.zip
agents/xp32.zip
agents/xp64.zip
agents/ap32.zip
agents/ap64.zip
agents/mz31.pax
agents/mz64.pax

Starting a Java application with the Health Center agent enabled
There are two ways to activate the Health Center agent when your Java application
is started. There are additional considerations for specific WebSphere or Rational®

products.

Prerequisite

The Health Center agent must be installed. See “Installing the Health Center
agent” on page 200 for more information.

Procedure

To monitor an application, the Health Center agent must be enabled when the JVM
is started. There are two ways to do this:
1. Start Java from the command line using the appropriate Health Center option,

which is described in full in the “Platform requirements” on page 198 section.
For example, with Java 5 SR9 and earlier, or Java 6 SR4 and earlier, use:
java -agentlib:healthcenter -Xtrace:output=perfmon.out -classpath my/class/path.jar MyMainClass

For Java 5 SR10 and later, or Java 6 SR5 and later, use:
java -Xhealthcenter -classpath my/class/path.jar MyMainClass

2. Use the IBM_JAVA_OPTIONS environment variable to set the Health Center
agent option before running your Java command. For example, on Microsoft
Windows, with Java 5 SR9 and earlier, or Java 6 SR4 and earlier, enter the
following command:
set IBM_JAVA_OPTIONS="-agentlib:healthcenter -Xtrace:output=perfmon.out"

For Java 5 SR10 and later, or Java 6 SR5 and later, type:
set IBM_JAVA_OPTIONS="-Xhealthcenter"

When the option is set you can start Java.

After the JVM is started with the agent enabled, you see a message detailing the
port for the Health Center agent. For example:
05-Mar-2009 09:49:57 com.ibm.java.diagnostics.healthcenter.agent.mbean.HCLaunchMBean startAgent
INFO: Health Center agent started on port 1972.

The port number is also written to the healthcenter.<pid>.log file in the users
temporary directory. The <pid> is the process ID for the agent that is listening on
that port.

To enable the Health Center agent when a JVM is started in a WebSphere or
Rational product environment, see “Configuring WebSphere or Rational product
environments” on page 203.

Changing the listening port

By default, the Health Center agent uses port 1972 for its communications. If it
cannot use port 1972, it increments the port number and tries again, for up to 100
attempts. You can override the first port number that the agent tries to use.

If you are using a JVM level that provides the -Xhealthcenter option (described in
the “Platform requirements” on page 198 section), you can specify the port as a
command-line option. For example:
java -Xhealthcenter:port=<port_number> HelloWorld

Chapter 8. Using diagnostic tools 201

Otherwise, use the com.ibm.java.diagnostics.healthcenter.agent.port
command-line option. For example:
java -agentlib:healthcenter -Xtrace:output=perfmon.out -Dcom.ibm.java.diagnostics.healthcenter.agent.port=<port_number> HelloWorld

To change the port permanently, edit the following line in the
healthcenter.properties file.
com.ibm.java.diagnostics.healthcenter.agent.port

This file is in the jre/lib directory of the JVM containing the agent.

Starting the Health Center agent without a client connection

From Health Center V1.2, you can start the agent without a client connection in
place. The agent waits for a client connection with no impact on the application
that is running. When the client connects to the agent, data collection starts. To
configure an agent to start in this mode, edit the following line in the
healthcenter.properties file, and change the value to off.
com.ibm.java.diagnostics.healthcenter.data.collection.level

This file is in the jre/lib directory of the JVM containing the agent.

For more information about troubleshooting problems with the Health Center
agent, see “Cannot connect to an application” on page 227.

Connecting to a Java application using the Health Center client
You can connect the Health Center client to a Java application that you want to
monitor.

Prerequisite

The JVM in which the Java application is running must have the Health Center
agent installed and active. See “Installing the Health Center agent” on page 200
and “Starting a Java application with the Health Center agent enabled” on page
201 for more information.

Procedure

To connect the Health Center client to a Java application:
1. Select New Connection from the File menu of an open Health Center client, or

start the client. A connection wizard is displayed.
2. Ensure that you have enabled your application for monitoring then click Next.
3. Specify the host name and port number. The Health Center makes a connection

using these details. The Health Center can scan for open ports on a machine
that might have agents waiting for a connection. This behavior is enabled by
the Scan next 100 ports for available connections option.

4. If you require authentication, select the appropriate option and enter a user
name and password.

5. Click Next to find available connections in the host and port range specified.
Select a connection from the list of connections found.

6. Click Finish to connect to the selected host and port.

After the wizard finishes, the Health Center attempts to connect to the host name
and port that you specified. A message dialog box notifies you if authentication is
required.

202 WebSphere Real Time V2 for Linux: User Guide

If you cannot connect to the application, see the troubleshooting topic: “Cannot
connect to an application” on page 227.

Connecting to a Java application using authentication:

Authentication provides a secure way of accessing your Java application through
the Health Center agent.

Using authentication: agent setup

For the Health Center agent, authentication is configured using files on disk. The
agent requires an authentication file to configure the user name and password, and
an authorization file to configure access for that user name. The authentication file
contains the user name and password, separated by a space. The authorization file
contains the user name and the word readwrite, separated by a space. Here is a
sample authentication file for authentication.txt:
myuser mypassw0rd

The associated authorization.txt file is similar to:
myuser readwrite

Note: Use only alphabetic characters for the user name and password. Do not use
spaces or symbols.

You can choose the files to use by configuring the following command-line options:
v com.ibm.java.diagnostics.healthcenter.agent.authentication.file
v com.ibm.java.diagnostics.healthcenter.agent.authorization.file

For example:
java -agentlib:healthcenter -Xtrace:output=perfmon.out \
-Dcom.ibm.java.diagnostics.healthcenter.agent.authentication.file=/home/user/authentication.txt \
-Dcom.ibm.java.diagnostics.healthcenter.agent.authorization.file=/home/user/authorization.txt \
MyClassName

Ensure that you configure the permissions on the authentication file so that only
authorized users can see the password information it holds.

Using authentication: client setup

To use authentication with the Health Center client, tick the authentication option
on the wizard page and enter the user name and password stored in the
authentication.txt file.

Configuring WebSphere or Rational product environments
Learn how to enable the Health Center agent for Java applications that run in
specific environments.

Prerequisite

The Health Center agent must be installed. See “Installing the Health Center
agent” on page 200 for more information about how to install the Health Center
agent.

Procedure

Chapter 8. Using diagnostic tools 203

Before using the Health Center client to connect to a Health Center agent running
in specific WebSphere or Rational environments, the Health Center agent must be
started. The steps you need to follow to start the agent can be different depending
on the products you are using.

Configuring WebSphere Application Server environments:

To enable Health Center monitoring in a WebSphere Application Server
environment, use the administration console to change the configuration.

Prerequisite

The Health Center agent must be installed. See “Installing the Health Center
agent” on page 200 for more information about how to install the Health Center
agent before you configure WebSphere Application Server.

Procedure

To enable the Health Center for use with WebSphere Application Server:
1. Select Servers ->Server Types -> WebSphere application servers.
2. Select the server name and then select Java and Process Management ->

Process definition -> Java Virtual Machine -> Generic JVM Arguments.
3. Enter the correct string for your Java Virtual Machine (JVM) version.

On UNIX system based platforms:
v For Java 5 SR9 and earlier or Java 6 SR4 and earlier, use:

-agentlib:healthcenter -Xtrace:output=/tmp/perfmon.%p.out

v For Java 5 SR10 and later, or Java 6 SR5 and later, use:
-Xhealthcenter

On Microsoft Windows:
v For Java 5 SR9 and earlier or Java 6 SR4 and earlier, use:

-agentlib:healthcenter -Xtrace:output=C:\temp\perfmon.%p.out

v For Java 5 SR10 and later, or Java 6 SR5 and later, use:
-Xhealthcenter

4. Apply the changes and save the settings at the top of the page.
5. Restart the JVM.

On UNIX system based platforms, the perfmon*.out files are in /tmp.
On Microsoft Windows, the perfmon*.out files are in your temporary directory.

6. Connect to the server from the Health Center client. The default port number is
1972. For more information about connecting, see “Connecting to a Java
application using the Health Center client” on page 202.

Configuring WebSphere Integration Developer environments:

To enable Health Center monitoring of a WebSphere Application Server test
environment in WebSphere Integration Developer, use the administration console
to change the configuration.

Prerequisite

The Health Center agent must be installed. See “Installing the Health Center
agent” on page 200 for more information about how to install the agent before you
start the WebSphere Application Server test environment with monitoring enabled.

204 WebSphere Real Time V2 for Linux: User Guide

Procedure

To enable the Health Center for use with the WebSphere Application Server test
environment in WebSphere Integration Developer.
1. Locate the Java Runtime Environment (JRE) directory for the test environment

runtime that you want to monitor with the Health Center. For WebSphere
Application Server v6.1 in WebSphere Integration Developer on a Microsoft
Windows system, this directory is typically C:\Program Files\IBM\SDP70\
runtimes\base_v61\java\jre.

2. Copy the agent files into this directory.
3. From the WebSphere Integration Developer console, select Servers and select

the test environment runtime that you want to start.
4. Use the right mouse button to display a list of actions and select Start.
5. From the WebSphere Integration Developer console, select Servers and select

the test environment runtime again.
6. Use the right mouse button to display a list of actions and select Run

administrative console.
7. When the admin console has started, locate and update the generic Java

Virtual Machine (JVM) arguments field by expanding Servers → Application
servers → server1.

8. Next, expand Java and Process Management → Process Management →
Process Definition → Java Virtual Machine.

9. Add the correct string for your JVM version to the end of the Generic JVM
arguments field.
v For Java 5 SR9 and earlier or Java 6 SR4 and earlier, use:

-agentlib:healthcenter -Xtrace:output=perfmon.%p.out

v For Java 5 SR10 and later, or Java 6 SR5 and later, use:
-Xhealthcenter

10. Select Apply and Save.
11. From the WebSphere Integration Developer console, select Servers and restart

the test environment runtime. Do this by using the right mouse button to
display a list of actions and select Restart → Start.

12. Start the Health Center client.
13. Connect to the system that is running the WebSphere Integration Developer

test environment runtime. For more information about connecting, see
“Connecting to a Java application using the Health Center client” on page 202.

14. You can check that you have connected to the correct test environment from
the Health Center GUI. Select Environment to see the environment
perspective and select Java Virtual Machine. The Java Home value is the same
as the JRE directory that you located in the first step.

Configuring Rational Application Developer environments:

To enable Health Center monitoring of a WebSphere Application Server test
environment in Rational Application Developer, use the administration console to
change the configuration.

Prerequisite

The Health Center agent must be installed. See “Installing the Health Center
agent” on page 200 for more information about how to install the agent before you
start the WebSphere Application Server test environment with monitoring enabled.

Chapter 8. Using diagnostic tools 205

Procedure

To enable the Health Center for use with the WebSphere Application Server test
environment in Rational Application Developer:
1. Locate the Java Runtime Environment (JRE) directory for the test environment

runtime that you want to monitor with the Health Center. For WebSphere
Application Server v6.1 in Rational Application Developer 7.0 on a Microsoft
Windows system, this directory is typically C:\Program Files\IBM\SDP70\
runtimes\base_v61\java\jre.

2. Copy the agent files into this directory.
3. From the Rational Application Developer console, select Servers and select the

test environment runtime that you want to start.
4. Use the right mouse button to display a list of actions and select Start.
5. From the Rational Application Developer console, select Servers and select the

test environment runtime again.
6. Use the right mouse button to display a list of actions and select Run

administrative console.
7. When the admin console has started, locate and update the generic Java

Virtual Machine (JVM) arguments field by expanding Servers → Application
servers → server1.

8. Next, expand Java and Process Management → Process Management →
Process Definition → Java Virtual Machine.

9. Add the correct string for your JVM version to the end of the Generic JVM
arguments field.
v For Java 5 SR9 and earlier or Java 6 SR4 and earlier, use:

-agentlib:healthcenter -Xtrace:output=perfmon.%p.out

v For Java 5 SR10 and later, or Java 6 SR5 and later, use:
-Xhealthcenter

10. Select Apply and Save.
11. From the Rational Application Developer console, select Servers and restart

the test environment runtime. Do this by using the right mouse button to
display a list of actions and select Restart → Start.

12. Start the Health Center client.
13. Connect to the system that is running the Rational Application Developer test

environment runtime. For more information about connecting, see
“Connecting to a Java application using the Health Center client” on page 202.

14. You can check that you have connected to the correct test environment from
the Health Center GUI. Select Environment to see the environment
perspective and select Java Virtual Machine. The Java Home value is the same
as the JRE directory that you located in the first step.

Data available on connection to a running Java application
When connecting the Health Center to a running Java application, the data
available for the client to display can vary for a number of reasons.

The data available to the Health Center client on connection to a live source varies
depending on the following conditions:
v If this is the first Health Center client that has connected to a particular live

source since it was started.
v The version of the Java Virtual Machine (JVM) being monitored.

206 WebSphere Real Time V2 for Linux: User Guide

v The version of the Health Center agent used (see the section on platform
requirements for the agent in: “Platform requirements” on page 198).

Health Center clients consume data from the system to which they are connected.
Therefore, after the first time that a Health Center client connects to a particular
live source, subsequent Health Center client connections to the same source will
not have access to data used by the first Health Center client connection.

For example:
1. Health Center client A connects to live source L.
2. Health Center client A uses some data from live source L and then disconnects.
3. Health Center client B connects to live source L.

When Health Center client B connects, the data that was used by client A is no
longer available, so client B can access only the data that client A did not use.

Data available on first Health Center client connections to a live source

Java version Available data

Java 5 SR9 and earlier, or Java 6 SR4 and
earlier

Data from the time when the live source was
started until the current time.

Java 5 SR10 and later, or Java 6 SR5 and
later

As much historical data as fits in the Health
Center agents buffer, up to the current time.

Data available on subsequent Health Center client connection to a live
source

Java version Available data

Java 5 SR9 and earlier, or Java 6 SR4 and
earlier

All data from the time when the live source
was started until the current time, which has
not already been used by a Health Center
client.
Restriction: Method names are available
only for classes loaded since the previous
Health Center client was disconnected.

Java 5 SR10 and later, or Java 6 SR5 and
later

As much historical data as fits in the Health
Center agents buffer, up to the current time,
which has not already been used by a
Health Center client.
Note: In the profiling perspective, some
method names might not display
immediately.

Controlling the amount of data generated
How to control the amount of generated data, in order to prevent loss of data.

If an application generates more data than Health Center can process, it is possible
that Health Center might lose some data. If data loss occurs, you see a message
about dropped data points in the agent connection view.

You can reduce the likelihood of losing data by turning off individual perspectives
if you are not interested in the data they display. If a perspective is turned off, data
for that perspective is no longer generated and sent to the Health Center client.

Chapter 8. Using diagnostic tools 207

To turn off a perspective, use the preferences option under Subsystem
Enablement.

Saving data
Health Center can save the data that it is currently analyzing to a .hcd file on the
hard disk.

The .hcd file can be opened by the Health Center at a later date without the need
for a live connection. The file contains data showing what the system looked like
at the time the data was saved. The file does not need to be opened by the Health
Center that created it. The file can be passed to another installation of the same
version for analysis. For more information, see “Opening files from disk.”

Saving data to disk

To save data to disk, select File → Save Data.

You are prompted to enter a file name and location for saving the data.

The amount of disk space used to export data is configurable. By default, the disk
space is 300 MB. This means that only the most recent 300 MB of data read by the
Health Center is available to save. The quantity of information produced by the
monitored application determines the time duration included in the 300 MB of
data. For example, an application producing little information might record the last
10 hours of trace data in 300 MB of space. An application producing much
information might only record the last 10 minutes of data.

To change the amount of disk space used to save data, use the disk space
management option under Preferences → Data Storage Settings. To save all the
data read by the Health Center, clear this option.

CAUTION:
If you remove the limit on the file size, the file might grow until you run out of
disk space.

All the data currently available is exported. If you cropped the data displayed by
dragging to select only a particular time interval, then the cropping settings are
lost when you import the file. If you have enabled Sliding window truncation,
then data outside of the sliding window you selected is exported if the data has
not yet been removed from the disk. The exported data is available when you
import the file later.

Opening files from disk
When Health Center monitors a Java application, data is stored to disk.

Health Center can analyze log files gathered from an earlier invocation of a Java
Virtual Machine (JVM), without making a live connection. To open log files from
disk, cancel the connection wizard that appears when the client is started.

Opening saved data files

If you saved data previously, you can load the data back into the Health Center.
Saved data files have a .hcd file extension. Older releases of the Health Center
stored data in files with a .zip file extension.

208 WebSphere Real Time V2 for Linux: User Guide

To load saved data, select File → Open File.

Select the name of the .hcd or .zip file containing the data to load. Depending on
the quantity of data to import, it might take a while for the Health Center to
process the files. When the import finishes, the Health Center displays the
information.

Opening log files

For Java 5 SR9 and earlier or Java 6 SR4 and earlier, the Health Center agent stores
data to disk in the perfmon.out file. To open a log file, select File → Open File.

The Health Center can parse trace files containing garbage collection information
or profiling information. These trace files are created automatically by the Health
Center agent when enabled with the -agentlib:healthcenter and
-Xtrace:output=perfmon.out command-line options.

When a file is opened, the Health Center attempts to parse it and analyze the
parsed data. On completion of the analysis, the status view and perspective are
updated to show the available information.

JVM subsystems for which data is available are linked. For further information,
you can click the available links, including Profiling, Classes, Locking and
Garbage Collection.

Classes perspective
Class loading might be a cause of failures or performance problems.

Class loading often causes difficulties for application developers. It might prevent a
class from functioning correctly; for example, being unable to resolve a class or
loading an incorrect version of a class. Performance problems during class loading
can also occur; for example, the application might pause when a new class is
loaded and the pause triggers the loading of other classes; or classes might be
constantly being loaded.

Be aware that class loading might cause memory usage problems. When a class is
loaded, it uses the native heap, which is released only when the class loader that
loaded it is garbage collected. If a class loader does not become eligible for garbage
collection when expected, native heap is not freed appropriately.

If you see an OutOfMemory error, it is likely that more classes have been loaded
over time than are unloaded, and the available memory on the heap has decreased.

Using the classes perspective
The classes perspective displays the density of class loading over time, which
classes were loaded at which time, and whether a class was loaded from the class
sharing cache.

The class loading timeline

The class loading graph gives a visual indication of how much class loading
occurred in your application over time. Use the graph to identify points in time at
which classes were loading at a rate you did not expect.

Chapter 8. Using diagnostic tools 209

The classes table

The classes table gives a more detailed view of which classes have been loaded at
which times. This table also indicates whether the class was loaded from the
shared classes cache.

Column heading Description

Time loaded The time, measured from Java Virtual Machine (JVM) start time, when
the class was loaded.

Shared cache Whether the class was loaded from the shared classes cache. Not all
classes can be cached.

Classname The full name of the loaded class.

Filtering the classes table

Use the text box above the table to filter the output of the classes table. For further
information about filtering, see the filtering help topic.

Viewing data for a particular time period

You can select the time interval for displaying data, and making recommendations,
by using cropping. For further information about cropping, see “Cropping data”
on page 232.
Related concepts

“Cropping data” on page 232
You can change the time period for which data is displayed and on which
recommendations are based.

Class references
Links to some websites for more information about classes.

You can analyze and understand Java class loading problems through the
following links:
v Class loading: class loading is described in the class loading section of the Java

Diagnostics Guide.
v Class data sharing: class data sharing is described in the class data sharing section

of the Java Diagnostics Guide.
v Java classes and class loading: a basic introduction to class files and class loaders.
v Class sharing: an introduction to the shared classes feature available in IBM JVMs

to reduce memory footprint and increase startup performance.

Environment perspective
Areas monitored by the environment perspective.

The environment perspective shows system and configuration information about
the monitored Java Virtual Machine (JVM), including:
v Version information for the JVM
v Operating system and architecture information for the monitored system
v Process ID
v All system properties
v All environment variables

210 WebSphere Real Time V2 for Linux: User Guide

http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/topic/com.ibm.java.doc.diagnostics.50/diag/understanding/class_loader.html
http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/topic/com.ibm.java.doc.diagnostics.50/diag/understanding/shared_classes.html
http://www.ibm.com/developerworks/java/library/j-dyn0429/
http://www.ibm.com/developerworks/java/library/j-ibmjava4/

This information can be useful in confirming that the intended JVM is being
monitored. You can use this information to help diagnose some types of problems.

The Health Center identifies JVM parameters that might adversely affect system
performance, stability, and serviceability. If any of these parameters are detected, a
warning is displayed.

Environment references
Links to some websites for more information about environment.

You can analyze and understand Java environment problems through the following
links:
v Nonstandard command-line options provides a list of all the IBM -X options

supported by IBM.
v Revelations on Java signal handling and termination discusses how the Java

Virtual Machine (JVM) handles signals and how to write signal handlers.

Garbage collection perspective
Identify memory leaks and review suggested tuning parameters.

Garbage collection is a system of automatic memory management. Memory that
has been dynamically allocated but that is no longer in use is reclaimed without
intervention by the application. Garbage collection solves the problem of
determining object liveness by freeing memory only when it becomes unreachable.

Garbage collection offers many benefits in terms of application robustness and
performance. The Java Virtual Machine (JVM) auto-tunes garbage collection but
explicit tuning can improve performance or bring application behavior in line with
quality of service requirements. You can also use garbage collection to identify
applications that are not running properly. Excessive memory consumption can
have a significant performance affect. A memory leak can cause an application to
fail.

The Health Center attempts to suggest tuning parameters and identify memory
leaks.

Enabling the garbage collection perspective

Enable the garbage collection perspective:
1. Connect to a JVM running the Health Center agent.
2. Open the binary trace log from a JVM running the Health Center agent.

More detailed garbage collection information is available from Java 6 than from
Java 5.

Using the garbage collection perspective
The heap usage, pause times, summary table, and tuning recommendation sections
in the Health Center garbage collection perspective.

The Health Center garbage collection perspective has the following sections:
v A graph of heap usage.
v A graph of pause times.
v A summary table of important GC metrics.
v Tuning recommendations.

Chapter 8. Using diagnostic tools 211

http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/topic/com.ibm.java.doc.diagnostics.50/diag/appendixes/cmdline/cmdline_x.html
http://www.ibm.com/developerworks/java/library/i-signalhandling/

v A table showing the call stacks for large object allocations.

Heap usage

Use the graph of heap usage to identify trends in application memory usage. If the
memory footprint is larger than expected, a heap analysis tool can identify areas of
excessive memory usage. If the used heap is increasing over time, the application
might be leaking memory. A memory leak happens when Java applications hold
references to objects that are no longer required. Because these objects are still
referenced, they cannot be garbage collected and contribute to memory
requirements. As the memory consumption grows, more processor resources are
required for garbage collection, leaving fewer for application work. Eventually the
memory requirements can fill the heap, leading to an OutOfMemoryError exception,
and an application failure.

When monitoring a WebSphere Real Time for Linux JVM, you see a used heap
graph that has a typical pattern of regular spaced collections, like the following
screen capture.

Pause times

Use the graph of pause times to assess the performance affect of garbage collection.
When garbage collection is running, all application threads are paused. For some
applications, such as batch-processing, long pauses are not a problem. For other
applications, such as GUI applications or applications that interact with other
systems, long garbage collection pauses might not be acceptable.

Longer garbage collection pauses are often associated with better application
throughput and are not a performance problem. Spending extra time in garbage
collection can often lead to improved memory allocation and memory access times.
The aim of garbage collection tuning is to have reduced pause times only if low
response times are required.

Summary table

The summary table shows garbage collection metrics, including mean pause time,
mean interval between garbage collections, and the amount of time spent in

212 WebSphere Real Time V2 for Linux: User Guide

garbage collection. The time an application spends in garbage collection must not
be taken as a performance metric itself. Some garbage collection policies, such as
the generational concurrent (gencon) policy, can take more time in garbage
collection but still provide improved application performance.

Tuning recommendations

The Health Center provides general tuning recommendations and advice. In
exceptional cases, further fine-tuning might be required. The Health Center does
not know what your quality of service requirements are, therefore the
recommendations are not always useful. For example, a suggested change might
improve application efficiency but increase pause times, which might not be best
for your application. The tuning recommendations also indicate if the application
seems to be leaking memory. However, the Health Center cannot distinguish
between naturally increasing memory requirements and memory that is being held
when it is no longer required.

Object allocations

Use the object allocations view to identify which code is allocating large objects.
You can use low and high-threshold values to specify the object range that triggers
collection of the call stack information.

The view displays a table showing the following information:
v The size of the allocated object.
v The time of allocation.
v The code location of the allocation request.

Select a row in the table to display the call stack contents at the time of the
selected allocation request.

Controlling the collection of object allocation data

When the Health Center is connected to a live agent, the following controls are
available in the object allocation view:

A check box to enable the collection of object allocation call stacks
By default, collection is not enabled.

Stack trace depth
This control limits the collection of data to the specified number of stack
entries. By default, five stack entries are collected.

Low threshold value
Data is collected for allocations of objects that are larger than the value
specified.

High threshold value
Data is collected for allocations of objects that are smaller than the value
specified.

You can specify the threshold values using bytes, kilobytes, or megabytes. The
precise format of a value is nnnn[k|m], where nnnn is the numeric value, k is an
optional indicator for kilobyte, and m is an optional indicator for megabyte. For
example:
v 4096 is the value 4096 bytes.
v 830k is the value 830 kilobytes.

Chapter 8. Using diagnostic tools 213

v 2m is the value 2 megabytes.

Viewing data for a particular time period

You can select the time interval for displaying data, and making recommendations,
by using cropping. For further information about cropping, see “Cropping data”
on page 232.
Related concepts

“Cropping data” on page 232
You can change the time period for which data is displayed and on which
recommendations are based.

Garbage collection references
Links to some websites for more information about garbage collection.

You can analyze and understand garbage collection diagnostic output through the
following links:
v Garbage collection policies, Part 1 explains the different garbage collection policies

and their characteristics. Part of the Java technology, IBM style series.
v Garbage collection policies, Part 2 explains what to consider when choosing a

garbage collection policy, and how to get guidance on your choice from the
verbose garbage collection logs. It describes the kind of information that is
available from verbose garbage collection logs and presents two case studies.
Part of the Java technology, IBM style series.

v Fine-tuning Java garbage collection performance tells you how to detect and
troubleshoot garbage collection problems with the IBM implementation of the
Java virtual machine.

v Java diagnostics, IBM style, Part 2: Garbage collection with the IBM Monitoring and
Diagnostic Tools for Java - Garbage Collection and Memory Visualizer discusses the
garbage collector and memory visualizer, including some tutorials and example
scenarios.

v IBM Systems Journal: Tuning Garbage Collection with IBM Technology for Java
discusses tuning garbage collection for IBM i. Many of the principles are
generally applicable.

v The developerWorks® Java zone provides all Java content for you to browse.
v Java Diagnostics Guide; Memory Management provides more details about garbage

collection and instructions about adjusting garbage collection parameters.

I/O perspective
This perspective provides information about I/O activities performed by the target
Java Virtual Machine (JVM).

Applications monitored by the Health Center might perform input or output (I/O)
tasks as they run. The I/O perspective gives you information about these activities.
You can use this perspective to help you solve problems such as when the
application fails to close files.

The I/O perspective provides information about three aspects.
v File open events
v File close events
v Details of files that are currently open

The information is presented in one of three views.

214 WebSphere Real Time V2 for Linux: User Guide

http://www-128.ibm.com/developerworks/java/library/j-ibmjava2/index.html
http://www-128.ibm.com/developerworks/java/library/j-ibmjava3/index.html
http://www.ibm.com/developerworks/library/i-gctroub/
http://www.ibm.com/developerworks/java/library/j-ibmtools2/index.html?ca=drs-
http://www.ibm.com/developerworks/java/library/j-ibmtools2/index.html?ca=drs-
http://www.ibmsystemsmag.com/ibmi/september07/administrator/18121p1.aspx
http://www.ibm.com/developerworks/java/
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp?topic=/com.ibm.java.doc.diagnostics.60/diag/understanding/memory_management.html

File open view

This view reports the number of files currently held open by the target application.
Use this view to find out if the number of open files is increasing. An increasing
number indicates that the application might not be closing file handles after use.

File I/O view

This view shows information about each file open or file close event. Use this view
to help you identify problems with I/O “bottlenecks”.

Open file details view

This view shows information about the files currently held open by the target
application. The information includes the file name, and the time it was opened.
You can filter the information in this view by using the text box above the view.
For more information about filtering, see “Filtering” on page 233.

Locking perspective
Review lock usage and identify possible points of contention.

Multi-threaded applications need to synchronize, or lock, shared resources to keep
the state of the resource consistent. This consistency ensures that the status of one
thread is not changed while another thread is reading it.

When locks are used in high-load applications that are deployed on systems with a
large number of processors, the locking operation can prevent the application from
using all the available processing resources.

The Locking perspective profiles lock usage and helps identify points of
contention in the application or Java Runtime that prevent the application from
scaling.

Using the Locking perspective
The Locking perspective provides information in graph and table form that helps
you understand any contention caused by locking.

Information is shown for two kinds of locks:

Java monitors
synchronized Objects in the Java application, provided as part of the Java
Class Libraries, middleware, independent software packages, or application
code.

System monitors
locks that are part of the Java Runtime itself.

Java monitors are shown by default and are most useful in resolving application
contention issues. To show the system monitors, use the filter icon in the top right
of the table or plot.

Garbage collection time is removed from hold times for all monitors held across a
garbage collection cycle.

Understanding the bar chart

The bar chart gives an overview of how contended the application locks are.

Chapter 8. Using diagnostic tools 215

The height of the bars represents the slow lock count and is relative to all the
columns in the graph. A slow count occurs when the requested monitor is already
owned by another thread and the requesting thread is blocked.

The color of each bar is based on the value of the % miss column in the table. The
gradient moves from red (100%), through yellow (50%), to green (0%). A red bar
indicates that the thread blocks every time that the monitor is requested. A green
bar indicates a thread that never blocks.

Only the most contended monitors are shown.

Understanding the table

The Monitors table shows the data for each monitor listed:

Table 6. Monitors table

Column heading Description

% miss The percentage of the total Gets, or acquires,
for which the thread trying to enter the lock
on the synchronized code had to block until
it could take the lock.

Gets: The total number of times the lock has been
taken while it was inflated.

Slow: The total number of non-recursive lock
acquires for which the requesting thread had
to wait for the lock because it was already
owned by another thread.

Recursive: The total number of recursive acquires. A
recursive acquire occurs when the requesting
thread already owns the monitor.

% util: The amount of time the lock was held,
divided by the amount of time the output
was taken over.

Average hold time: The average amount of time the lock was
held, or owned, by a thread. For example,
the amount of time spent in the
synchronized block, measured in processor
clock ticks.

Name: The monitor name. This column is blank if
the name is not known.

The table lists every monitor that was ever inflated. The % miss column is of initial
interest. A high % miss shows that frequent contention occurs on the synchronized
resource protected by the lock. This contention might be preventing the Java
application from scaling further.

If a lock has a high % miss value, look at the average hold time and % util. If %
util and average hold time are both high, you might need to reduce the amount of
work done while the lock is held. If % util is high but the average hold time is
low, you might need to make the resource protected by the lock more granular to
separate the lock into multiple locks.

216 WebSphere Real Time V2 for Linux: User Guide

Understanding lock names

The monitor names include an object address, shown in square brackets, and the
type of the lock. For example, when synchronizing on an object with class Object,
the monitor name includes an address and java/lang/Object.

Locking on AIX

AIX architecture means that locking works differently from other platforms. On
AIX, more locks might be shown as badly performing, especially system monitor
locks. This is expected behavior on AIX.

Resolving lock contention
Performance can be improved using different approaches for dealing with locks.

There are two mechanisms for reducing the rate of lock contention:
v Reducing the time during which the lock is owned when taken. For example,

limiting the amount of work done under the lock or in the synchronized block
of code.

v Reducing the scope of the lock. For example, using a separate lock for each row
in a table instead of a single lock for the whole table.

Reducing the hold time for a lock

A thread must spend as little time holding a lock as possible. The longer a lock is
held, the more likely it is that another thread tries to obtain the lock. Reducing the
duration that a lock is held reduces the contention on the lock and enables the
application to scale further.

When a lock has a long average hold time, examine the source code to see if these
conditions apply:
v All the code run while the lock is held is acting on the shared resource. Move

any code in a lock that does not act on the shared resource outside the lock so
that it can run in parallel with other threads.

v Any code run while the lock is held results in a blocking operation; for example,
a connection to another process. Release the lock before any blocking operation
is started.

Reducing the scope of a lock

The locking architecture in an application must be granular enough that the level
of lock contention is low. The greater the amount of shared resource that is
protected by an individual lock, the more likely it is that multiple threads will try
to access the resource at the same time. Reducing the scope of the resource
protected by a lock reduces the level of lock contention and enables the application
to scale further.

Locking references
Links to some Web sites for more information about locking issues.

The following resources might help you to understand Java locking issues:
v How the JIT compiler optimizes code: describes inlining.
v Synchronization optimizations in Mustang explains how escape analysis can affect

synchronization.

Chapter 8. Using diagnostic tools 217

http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/index.jsp?topic=/com.ibm.java.doc.diagnostics.50/diag/understanding/jit_optimize.html
http://www.ibm.com/developerworks/java/library/j-jtp10185/index.html

v The Java Lock Monitor explains the data used by the locking perspective is
identical to that provided by the Java Lock Monitor.

v Java diagnostics, IBM style, Part 3: Diagnosing synchronization and locking problems
with the Lock Analyzer for Java provides more details and case studies on
resolving locking issues.

Native memory perspective
The native memory perspective provides information about the native memory
usage of the process and system being monitored.

Note: This version of Health Center does not provide a native memory perspective
view for the z/OS 31-bit or z/OS 64-bit platforms.
Native memory is the memory provided to the Java process by the operating
system. The memory is used for heap storage and other purposes. The native
memory information available in the native memory perspective view varies by
platform but typically includes the following:

Table 7. Memory information values

Name Description

Free Physical Memory The amount of physical memory (RAM) free
on the monitored system.

Process Physical Memory The amount of physical memory (RAM)
currently in use by the monitored process.
On some platforms, this memory is called
“resident storage” or the “working set”.

Process Private Memory The amount of memory used exclusively by
the monitored process. This memory is not
shared with other processes on the system.

Process Virtual Memory Total process address space used.

More detailed discussions on understanding native memory usage can be found in
two developerWorks articles:http://www.ibm.com/developerworks/java/library/
j-nativememory-linux/ and http://www.ibm.com/developerworks/java/library/j-
nativememory-aix/.

The perspective provides two views.

Native memory table view
This view displays a table containing the latest, minimum, and maximum
values for all the available native memory information. You can use this
table to see the most recent memory usage information for your monitored
application.

Native memory usage view
This view plots the process virtual memory and process physical memory
on a graph. The information presented helps you to monitor the native
memory usage by processes. By comparing this graph to the Used Heap
graph in the garbage collection perspective, you can see whether the
amount of memory used by an application is due to the size of the Java
Heap or due to the memory allocated natively.

Profiling perspective
Understanding the work performed by a Java application helps you to tune
performance and to diagnose functional issues.

218 WebSphere Real Time V2 for Linux: User Guide

http://perfinsp.sourceforge.net/jlm.html
http://www.ibm.com/developerworks/java/library/j-ibmtools3/
http://www.ibm.com/developerworks/java/library/j-ibmtools3/
http://www.ibm.com/developerworks/java/library/j-nativememory-linux/
http://www.ibm.com/developerworks/java/library/j-nativememory-linux/
http://www.ibm.com/developerworks/java/library/j-nativememory-aix/
http://www.ibm.com/developerworks/java/library/j-nativememory-aix/

The Profiling perspective shows you which methods are run most often, and in
which order.

Method profiling
You can use method profiling to see the methods that consume the most resources.

The profiling perspective shows method profiles and call hierarchies. The profiler
takes regular samples to see which methods are running. Only methods that are
called often, or take a long time to complete, are shown.

Reducing the resource usage when collecting method profiling data

In general, the profiling provided by the Health Center has little effect on the
performance of monitored applications. When monitoring applications with deep
stack traces, the use of computer resources might be more significant.

When the reduced overhead mode is enabled, the tree columns contain zeros. The
Invocation Paths and Called Methods views are unavailable. The self columns
continue to update. To enable the tree columns and disabled views, restart the
monitored Java Virtual Machine (JVM) and reconnect the Health Center.

See “Monitored application runs out of native memory or crashes” on page 229 for
more information.

Inlining

Within the Health Center, collections of methods are organized into structures
called trees. Inlining is the process by which the trees of smaller methods are
merged into the trees of their callers. Inlining speeds up method calls that are run
frequently. The compiler might even inline methods that are not marked final.
Inlined methods do not register on the method profile after they are inlined. A
method might briefly show as hot before dropping to the bottom of the method
profile table. The result is that time spent in the calling method suddenly increases.

Statistical profiling

The profiler is a statistical profiler, sampling the call stacks periodically rather than
recording every method that is run. Methods that do not run often, or methods
that run quickly, might not show in the profile list. Methods compiled by the
Just-In-Time (JIT) compiler are profiled, but methods that have been inlined are
not.

Performance tuning

Optimizing the code only produces a significant effect if most of the time is being
spent running application code. If time is being spent on I/O, on locks, or in
garbage collection, direct your performance tuning efforts to these areas instead.
The Health Center draws attention to problematic garbage collection or locking.

Method Profile view:

The Method Profile table shows which methods are using the most processing
resource.

Methods with a higher Self (%) value are described as “hot”, and are good
candidates for optimization. Small improvements to the efficiency of these methods

Chapter 8. Using diagnostic tools 219

might have a large effect on performance. Methods near the bottom of the table are
poor candidates for optimization. Even large improvements to their efficiency are
unlikely to affect performance, because they do not use as much processing
resource.

Column Heading Description

Self (%) The percentage of samples taken while a
particular method was being run at the top
of the stack. This value is a good indicator
of how expensive a method is in terms of
using processing resource.

Self A graphical representation of the Self (%)
column. Wider, redder bars indicate hotter
methods.

Tree (%) The percentage of samples taken while a
particular method was anywhere in the call
stack. This value shows the percentage of
time that this method, and methods it called
(descendants), were being processed. This
value gives a good guide to the areas of
your application where most processing time
is spent.

Tree A graphical representation of the Tree (%)
column. Wider, redder bars indicate hotter
method stacks.

Samples The number of samples taken while a
particular method was being run at the top
of the stack.

Method A fully qualified representation of the
method, including package name, class
name, method name, arguments, and return
type.

You can optimize methods by reducing the amount of work that they do or by
reducing the number of times that they are called. Highlighting a method in the
table populates the call hierarchy views.

Filter the contents of the method profile table using the text box above the table.
See the filtering help topic for more information.

Additionally, when you select the Hide low sample entries, the table does not list
any entries that have a sample count of less than 2. Use this option if your table
contains many entries that are not obvious candidates for optimization to improve
the performance of the table.

Invocation Paths:

The Invocations paths tab shows the methods that called the highlighted method.

If more than one method calls the highlighted method, a weight is shown in
parentheses. For any method, the sum of the percentages of its calling methods is
100%. The following example shows that a method Util.constructString() is often
called by another constructString() method (81.3% of samples). The
Util.constructString() method is also called occasionally by processTraceBuffer()
(18.7% of samples). The top level constructString() node has two children.

220 WebSphere Real Time V2 for Linux: User Guide

In this case, you have two strategies for optimization. The first is to make the
Util.constructString() method more efficient. The second is to reduce how often it is
called. Reducing how often processTraceBuffer() calls constructString() makes less
difference than halving how often constructString() calls Util.constructString().

Called methods:

The Called methods tab shows the methods that were called by the highlighted
method. In other words, they show where the highlighted method is doing its
work.

If only the highlighted method is shown, no methods called by that method were
sampled. Either the methods called ran quickly, or they were inlined. If the method
has children in the tree, the percentages typically do not add up to 100%. The
percentages for child methods never add up to more than 100%. The difference in
percentages indicates the time spent in the body of the highlighted method.

In the following example, the method JobListeners.done() calls two methods,
newEvent() and doNotify(). For 64.1% of the time that JobListeners.done() was on
the stack, newEvent() was also on the stack. For 12.8% of the time that
JobListeners.done() was on the stack, doNotify() was also on the stack. Therefore,
23.1% (that is 100% -64.1% -12.8%) of the time was spent in JobListeners.done()
itself.

Chapter 8. Using diagnostic tools 221

Note: Percentages refer only to the immediate parent node, hence for 96.5% of the
time that doNotify() was on the stack, notify() was also on the stack.

The Called methods tab is less useful for performance tuning than the Invocation
paths tab. Time spent processing children is not counted as time spent processing
the parent. A lightweight method calling some inefficient children is not placed
high in the method profile table. Any inefficient child methods typically show up
in the method profile table anyway.

Timeline:

The timeline tab shows when the methods were invoked.

The method profiling timeline gives a visual indication of when a method was
invoked in your application. You can use the graph to see if a method is used
regularly throughout the lifecycle of your application. Some methods might be
used only at a specific stage in the lifecycle, such as startup. This information can
help you decide if the method is a good target for optimization.

Method profiling references
Links to some Web sites for more information about method profiling.

The following resource might help you to understand how to analyze method
profiles:
v How the JIT compiler optimizes code is a section from the Java Diagnostics Guide

that covers inlining.

WebSphere Real Time perspective
Unusual or exceptional aspects of application performance might be indicated by
“outliers”. This perspective helps you identify and analyze trace information about
events that might appear inconsistent with expected application behavior.

Health Center gives you the tools required to:
v Identify outlier events.
v Filter trace information to highlight outlier events.
v Present outlier information in a timeline or histogram view.

The WebSphere Real Time perspective within Health Center enables you to answer
questions about application performance, such as:
v During an application run, how often did a specific operation complete on

schedule?
v Did any instance of the operation take a different amount of time to complete, in

comparison to other instances?
v What are the maximum, minimum, and mean times required to complete an

operation?
v What is the key factor - the “determinism factor” - affecting the performance of

the operation?

The WebSphere Real Time perspective is supported when Health Center connects
to applications running on one of the following platforms:
v WebSphere Real Time for Real Time Linux version 2.0 SR 3, or newer.
v WebSphere Real Time version 2.0 SR 2 with APAR IZ61672, or newer.

222 WebSphere Real Time V2 for Linux: User Guide

http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/index.jsp?topic=/com.ibm.java.doc.diagnostics.50/diag/understanding/jit_optimize.html

When Health Center detects that you are connecting to a WebSphere Real Time
application, the perspective is enabled automatically. If you attempt to use the
perspective while not connected to a WebSphere Real Time application, a warning
message is displayed in the status bar, or the appropriate view window.

If no data is available for a view, a message reports the problem in the window.
Common causes of data not being available include:
v The selected trace event is not enabled on the target application.
v No target events occurred while the trace was running.

Introduction to the WebSphere Real Time perspective
The WebSphere Real Time perspective (WRTP) helps you trace specific WebSphere
Real Time (WRT) events over time.

The perspective helps you identify unusual or exceptional events that might occur
when you run a WRT application. The trace information can be presented in
various ways, including linear or logarithmic scales, and histograms. WRTP
provides some pre-defined trace point views that are especially helpful.

Example traces include:
v Data about class loading, which lets you identify factors that have a significant

impact on application performance.
v Java method execution.

Each view in WRTP represents a specific JVM or application operation. A view
includes the following information:
v The component to which the specific target operation belongs.
v An entry trace point, representing the start of a specific target operation and a

parameter within that operation.
v One or more exit trace points, representing the end of a specific target operation

and a parameter within that operation.
v One or more information trace points, enabling you to filter specific detail from

among the data collected during the trace.

The predefined trace point views are supplied as a resource bundle, and are
automatically provided within the Health Center GUI. You can create and
customize more views, and make them available to Health Center by adding them
to a custom view store.

Data about trace points is recorded to help with the analysis. For example, each
time the application reaches an entry trace point, the operation start time is
recorded. Similarly, when the corresponding exit point is reached, the time is
recorded and the total time to perform the operation is calculated. This data is
used for graphical displays of information, and also for determinism calculations.

Within the WRTP, you can choose from predefined or customized views.
Predefined views include:
v Class loading, showing the time spent in class loading.
v Incremental garbage collection, showing the time taken by the global garbage

collection cycle.
v JIT compilation, showing the time spent in various compilation phases.
v Synchronous garbage collection, showing the time spent in synchronous garbage

collection.

Chapter 8. Using diagnostic tools 223

v User driven garbage collection, showing the time taken in garbage collection
cycles invoked by the application.

Customized views are described in “Customizing the WebSphere Real Time
perspective” on page 226.

Setting preferences for the WebSphere Real Time perspective
You can control how views appear and operate within the perspective.

The behavior of the perspective is affected by values set in the preferences menu.
The value also applies for subsequent tasks.

There are two categories of preferences:
v Custom view preferences
v Display preferences

Custom view preferences

This preference category has one value only. You can specify the location of a
customized view definition file. For more information about view definition files,
see “Customizing the WebSphere Real Time perspective” on page 226.

Display preferences

This preference category provides values that affect the default behavior of display
components. You can specify whether the default Y-axis display of plot or
histogram views is presented with a logarithmic scale or not.

For the histogram display, you can select the number of intervals presented. You
can also choose to exclude empty intervals from the display.

For more information about views, see “Views within the WebSphere Real Time
perspective.”

Views within the WebSphere Real Time perspective
Each view within the WebSphere Real Time perspective presents data in specific
sections of the display.

The controller window

The controller window provides the tools for you to select views of WebSphere
Real Time data. There are two main tasks you can perform using the controller
window.

Manage custom views
You can create a customized view, and add it to the list of available views.
For more information about creating customized views, see “Customizing
the WebSphere Real Time perspective” on page 226.

Select different views
You can select different views, using a combination box. The box is
populated initially with predefined views. Customized views also appear
in this box if a custom view definition file has been created and identified
in the preferences.

All predefined views are identified by a System view: prefix. All
customized views are identified by a Custom view: prefix.

224 WebSphere Real Time V2 for Linux: User Guide

The outlier plot window

This window displays event data as a simple plot graph. The X-axis of the graph
shows the actual time when an event took place. The Y-axis shows the time taken
for the event to occur. For convenience, the Y-axis values can be adjusted to
display using a logarithmic scale.

When you hover over data in the plot window, a window opens providing details
of the trace point associated with the event.

The histogram window

This window provides an alternative display of data. It shows a histogram
representation of the data displayed in the outlier plot window. For example, in
the predefined class loading view, the histogram representation shows how many
class loading events took 0 - 1 ms to complete, how many events took 1 - 2 ms to
complete, and so on.

The summary window

This window displays various statistics, calculated from the data presented in the
plot window. The statistics include:
v Total events processed.
v Maximum time taken.
v Minimum time taken.
v Mean value for time taken.
v Median value for time taken.
v The standard deviation.

Recommendations and analysis window

This window displays the results of analyzing the collected data. The results are in
the form of a determinism score. If the number of data samples is too low, the
Health Center warns you that the determinism score might not be accurate. In
particular, for Java method-based views, where the view descriptor might match
multiple methods, a warning is displayed reporting that multiple methods have
been matched.

The determinism score is calculated as follows:
1. Select all the data points in the plot window.
2. Calculate the median data point value - for example, the median time taken for

a class loading event.
3. Find how many events fall within the following ranges:
v Median plus or minus 20% of the median value
v Median plus or minus 40% of the median value
v Median plus or minus 60% of the median value
v Median plus or minus 80% of the median value
v Median plus or minus 100% of the median value

4. Calculate the average number of events for the ranges.
5. The average number is the determinism score, expressed as a percentage.

The determinism score can be interpreted as shown in Table 8 on page 226.

Chapter 8. Using diagnostic tools 225

Table 8. Interpreting the meaning of a determinism score

Score Meaning

70 or less A very poor result. There is a wide
distribution of results for the event,
indicating uneven performance.

70 - 80 A poor result.

80 - 90 A good result.

90 or more A very good result. The results are
distributed closely around the median value,
indicating consistent performance.

Customizing the WebSphere Real Time perspective
You can create, edit, and delete custom views within the WebSphere Real Time
perspective (WRTP).

Custom views can be managed using the “custom view management wizard”. The
views are defined in a custom view definition file. The location of this file is set in
the perspective preferences. For more information about this setting, see “Setting
preferences for the WebSphere Real Time perspective” on page 224.

Creating a custom view

Use the custom view management wizard to create a custom view. Invoke the
wizard by clicking the Add custom view button displayed in the controller view. If
you have not selected a custom view definition file preference, the first page of the
wizard lets you select a file.

Follow the steps presented by the wizard to create a custom view.

When the wizard finishes, the view is added to WRTP and is available
immediately.

A view shows data only when the required trace settings are provided for a target
JVM.

Editing a custom view

To edit a custom view, select the view in the drop-down box, then click the Edit
view button. The wizard starts in edit mode. This mode lets you modify one or
more aspects of the view. You cannot modify the name of a view.

Note: The Edit view button is enabled only when a custom view is selected in the
drop-down box.

Deleting a custom view

To delete a custom view, select the view in the drop-down box, then click the
Delete view button. The view is deleted. Any data associated with the view is also
deleted.

Note: The Delete view button is enabled only when a custom view is selected in
the drop-down box.

226 WebSphere Real Time V2 for Linux: User Guide

Troubleshooting
Troubleshooting information for some common problems. One method of
debugging involves looking in the log files, and this information explains how to
do that.

Use the navigation on the left to see the common problems available in this
section.

Log files

Any output produced by the Health Center client is written to the main ISA logs.
You access it by selecting Support, then View Log and Support, then View Trace
under the Help menu. Look here first if you are experiencing problems with the
Health Center tool in ISA. The agent will write to a log file in your temporary
directory.

Cannot connect to an application
Possible solutions if the application you want to monitor does not appear in the
connection dialog list.

Before any application can be monitored, the Java Virtual Machine (JVM) it is
running on must have a Health Center agent installed. See the agent installation
instructions.

Is the Health Center agent installed correctly?

Check the Health Center agent installation. See “Installing the Health Center
agent” on page 200 for more information.

Has the application been enabled for monitoring?

Check that the application has been enabled for monitoring. See “Starting a Java
application with the Health Center agent enabled” on page 201 for more
information.

Check that the agent and application are running

Check the application to see if it has been started. Check that the agent is running
on the application. If the agent has started successfully, you normally see a
message like INFO: Health Center agent started on port 1972 in the application
console. The port number is also written to the healthcenter.<pid>.log file in the
users temporary directory. The <pid> is the process ID for the agent that is
listening on that port.

Check that the application is still running. Sometimes applications end
unexpectedly early.

Connection problems are also possible if the monitored Virtual Machine (VM) is
running, but there are no more live application threads.

Check for suspended applications

If the monitored VM has been suspended, the connection dialog cannot connect to
the monitored VM and might timeout.

Chapter 8. Using diagnostic tools 227

Check firewalls

When the monitored application is not on the same workstation as the client, the
client must be able to access the monitored application remotely. If the remote
workstation is protected by a firewall, a port must be opened in the firewall to
enable the Health Center agent to listen for connections. Firewalls can also cause
timeouts when scanning for Health Center agents on a remote machine. In these
cases, specify the exact Health Center port, and clear the Scan next ports for
available ports option.

Check network interfaces

If the system running the monitored application has multiple network interfaces,
the agent might listen on a different interface to the one the client uses. To set the
interface that the agent listens on, use system properties. To use a specific network
interface, run the server with the follow property:
-Djava.rmi.server.hostname=<preferred_ip_address>

The <preferred_ip_address> determines the interface used by the agent.

Check authentication

If authentication is enabled on the monitored application, ensure that security
credentials have been entered on the first page of the connection wizard. Without
these credentials, the monitored application might not appear in the application list
on the second page of the connection wizard.

Check that application threads are running

The Health Center agent shuts down when it detects that all application threads
have terminated. In some cases, you do not want the Health Center to shut down.
For example, an application which exports objects to an external RMI registry stays
alive to allow RMI connections, but there are no active application threads. The
Health Center agent cannot find application threads, so it terminates. To ensure
that the Health Center agent keeps running, add the keepAlive option to the
Health Center launch parameters:
-agentlib:healthcenter=keepAlive

Note: A side-effect of the keepAlive option is that the monitored JVM does not
terminate.

Cleaning up temporary files
The Health Center client uses temporary files to hold work in progress. You can
save disk space by removing these temporary files at regular intervals.

The Health Center client stores temporary data in the operating system temporary
directory. Filenames have the format healthcenter[xxxx]Source[xxxx].tmp.
Remove these temporary data files regularly to avoid excessive use of disk space.
The files are not automatically removed because they can be used by the Health
Center for analysis tasks in offline mode.

For Java Virtual Machines at Java 5 SR9 and earlier, or Java 6 SR4 and earlier, the
Health Center agent also stores data to disk. Delete the perfmon.out file
occasionally if you typically start the agent from the command line:
-agentlib:healthcenter -Xtrace:output=perfmon.out

228 WebSphere Real Time V2 for Linux: User Guide

Data disappears
If the Health Center detects that it is going to run out of memory, it automatically
removes some older stored data.

Health Center runs a data truncation job at regular intervals to help prevent
problems that occur when running out of memory. Each time the job runs, Health
Center checks to see if it might run out of memory. If required, the Health Center
removes the oldest half of the stored data, based on the time the data was
generated.

By default, the data truncation job runs every 30 seconds. To change the time
interval, modify the value in the Data Storage section of the Health Center
preferences.

GUI unresponsive
The GUI might seem unresponsive due to the refresh rate of the Health Center.

The Health Center refreshes every ten seconds. This delay can sometimes make the
GUI seem unresponsive.

Hangs
Information about the environment variable DBUS_SESSION_BUS_ADDRESS on
Linux which can cause the Health Center to hang.

On some versions of Linux, the Health Center can go into an endless loop when
trying to open a file and seem to stop. If you log on to root from a normal user
account, use su - instead of su, otherwise you will inherit the
DBUS_SESSION_BUS_ADDRESS environment variable from your normal user
account. This variable is known to cause problems.

Monitored application runs out of native memory or crashes
Information about running the Health Center in a lower computer resource usage
mode.

The Health Center provides a mode for lower computer resource usage which you
enable by adding the option level=low to the Health Center command line.
Alternatively, the healthcenter.properties file, as found in $JAVA_HOME/lib, can
be edited and the com.ibm.java.diagnostics.healthcenter.data.collection.level
property changed from full to low.

On systems with many processors, and where the monitored application has deep
stack traces, the Health Center agent can sometimes consume unacceptable
amounts of native memory. On certain Virtual Machine (VM) levels, this
consumption could cause a failure in the VM. Configuring the Health Center for
lower resource usage might help prevent problems.

For more information about reducing resource usage during data collection, see
“Controlling the amount of data generated” on page 207.

No data present
There are several questions that you must consider when determining why no data
is present. The Health Center is most likely not to show updated data because
your connection to the agent is not functioning correctly or your application is not
doing enough work.

Chapter 8. Using diagnostic tools 229

Checking for a successful connection

If the Health Center successfully connects to an application, the message Connected
to <host>:<port> displays in the bottom left status line. If no connection is made,
Unable to connect to the live application is displayed.

If you cannot connect, check that your application was launched with the correct
arguments for your Java version. See “Platform requirements” on page 198 for
further information about using the Health Center with different versions of Java.

Check that you connected the client using the connection wizard. A message dialog
tells you when a successful connection is made.

Check that your firewall allows you to connect to the ports.

Is your application doing anything?

Data collected by the agent is buffered before being transferred to the client for
processing. If your application spends much time not running methods, for
example when waiting for GUI input, or does not trigger regular garbage
collections, the Health Center client data might take some time to display and
update.

Has the application been running for some time?

When connecting for the first time to a long-running application, there might be a
delay before data is displayed. The delay is a known limitation.

Are any trace options set?

The Health Center is not compatible with the trace option -Xtrace:none. If this
option is set, no garbage collection or profiling data is available.

Is the Just-In-Time (JIT) compiler on?

Profiling data is not available if the JIT compiler on the profiled application is
disabled.

Are you using the Java Debug Wire Protocol (JDWP)?

Profiling data is not available if you are debugging using JDWP on the profiled
application.

No I/O information present
You might not see any I/O information when using Java 6 on the Windows
platform.

If you have the latest agent installed, you can obtain I/O information by adding
-Xtrace:maximal=io to the command line of the application you are monitoring.

No method names showing
When connecting again to an agent, you might not see expected method names.

For Java 5 SR 9 and earlier or Java 6 SR 4 and earlier, if a previous connection was
made to the agent, you can view method names only for classes loaded since the
previous client was disconnected.

230 WebSphere Real Time V2 for Linux: User Guide

Only the first character of file names showing
When viewing file names, you might see only the first character.

The shortening of file names in this way is a known problem on Windows when
using JVMs earlier than Java 6 SR 8.

Out of memory errors and ISA 4.1
When using IBM Support Assistant (ISA) 4.1, the Health Center might run out of
memory while processing large files.

Processing large files using the Health Center might fail sometimes with the
java.lang.OutOfMemoryError message. This can be due to an insufficient Java heap
size. By default, IBM Support Assistant 4.1 has a maximum Java heap size of 256
MB. You should run the Health Center with a heap size of at least 512 MB.

To set the maximum Java heap size for ISA, add a property value to the
rcpinstall.properties file in the ISA workspace. Add or update the value for the
vmarg.Xmx property. For example, to set a maximum heap size of 512 MB, add the
line:
vmarg.Xmx=-Xmx512m

You must restart ISA for the changes to take effect.

On Windows, you normally find the rcpinstall.properties file in:
<home drive>\<home path>\IBM\ISAv41\.config\rcpinstall.properties

for example:
C:\Documents and Settings\Administrator\IBM\ISAv41\.config\rcpinstall.properties

On Linux, you normally find the rcpinstall.properties file in:
<home>/ibm/isa41/.config/rcpinstall.properties

Printing
Printing is not supported in the Health Center.

This release of the Health Center does not support printing of information or
reports.

Showing the Status perspective
Normally, the system status summary is always visible. To see the full system
status, use the Status perspective.

All perspectives show a summary of the system status. Use the Status perspective
to see the full system status. To open the Status perspective, click the toolbar icon:

.

Problems when using WebSphere Application Server -
Community Edition
There is a conflict between the Health Center agent and the MBeanServer used by
WebSphere Application Server - Community Edition.

Resolve the problem by changing the behavior of the Heath Center agent. Add the
following property to the command line when launching the application you want
to monitor:

Chapter 8. Using diagnostic tools 231

-Dcom.ibm.java.diagnostics.heathcenter.use.platformmbeanserver=true

When using this property, the Heath Center agent attempts to use the
MBeanServer that is created by the running application. You might also need to
delay the start of the Health Center agent to ensure that the application has started
the MBeanServer. Include the following property to introduce a short delay in the
Health Center agent startup.
-Dcom.ibm.java.diagnostics.healthcenter.agent.start.delay.seconds=<delay>

where <delay> is the number of seconds that the Health Center agent pauses
before starting.

Resetting displayed data
To assess the performance affect or attributes of a particular function in the
program that you are monitoring, use the Health Center to remove all currently
analyzed data from the views.

The Health Center provides information about a monitored application. To
concentrate on specific details, you can isolate some data. For example, if you want
to assess the most active method during a file load operation, you can isolate the
data recorded for program actions that take place when you use the application
GUI to load a file

Resetting the data

Health Center provides this ability through a menu option Data and Reset data,
duplicated on the toolbar. Reset data immediately deletes the data stored in the
data model in all views. You see data collected only after the time that you start
the Reset data function.

Limitations
v Incoming data is ignored after a data reset based on the timestamp at the GUI of

the client. If the system time on the agent machine is not the same as the system
time on the client machine, Reset data does not behave as expected.

Cropping data
You can change the time period for which data is displayed and on which
recommendations are based.

What is cropping?

Cropping involves selecting a subset of data by specifying a time interval on a
graph. The time interval is used to limit the data displayed by the Health Center,
and also affects how much data is used to make recommendations. Any data
recorded outside the time interval is ignored after cropping. Cropped data is not
displayed in graphs and is not used for recommendations.

What can you crop?

You can crop data on graphs. Graphs are displayed in several perspectives, such as
I/O and memory. Similarly, you can crop data on the time line graph within the
profiling perspective.

Some data, for example environment properties, are not time-based. If data are not
displayed in graph form, they cannot be cropped.

232 WebSphere Real Time V2 for Linux: User Guide

Why it is useful to crop data

If you know that a problem took place at a particular time, you might want to crop
the data to concentrate on the time interval of interest. Cropping helps reduce the
quantity of data to process.

How to crop data

To crop data on a graph, start by specifying the beginning of the time interval.
Specify the beginning by clicking one point in the graph. Next, drag to a second
point in the graph. The second point corresponds to the end of the time interval.
The graph adjusts so that only the selected time interval is displayed. Data
recorded outside the time interval is ignored.

How to reset cropped data

You can reset the graph so that data is no longer cropped in two ways:
v Right-click on the graph. Select Reset Cropping.
v Double-click anywhere on the graph.

Controlling the units
The units displayed by the Health Center can be modified in graphs, tables and
recommendations.

You can change the units of data that the Health Center displays. For example, it is
possible to use calendar dates instead of relative time, or to use GB instead of MB.
Unit changes are global, therefore changing the units in a graph will also adjust the
units in recommendations and in tables.

To change the units, hover over a graph to open the pop-up window. Click
Change Units, select the axis you want to change and then select the units you
want Health Center to display. If you want to use absolute times instead of relative
times, click date on the x-axis.

Filtering
Use regular expressions to filter the information displayed in views.

Chapter 8. Using diagnostic tools 233

You can filter the output of tables, such as the method profile and classes tables, by
entering expressions in the text box above the corresponding table. The filter text
box accepts well-formed regular expressions. When you enter part of the name,
only lines with matching content appear in the table. You can enter ^ to match the
beginning of some text, such as a class name. Similarly, using $ forces a match at
the end of the text.

For example, to see only packages beginning with “java”, enter ^java in the text
box.

To see only method names containing “.init”, enter \.init in the text box. The “\”
is important to escape the “.” which otherwise matches any character.

Filter examples

The following table shows some sample filter expressions:

Filter expression Required results

lang Any line containing lang

^com.ibm Any line beginning with com.ibm

\.get Any line containing .get

Performance hints
The Health Center agent has little effect on performance. You can improve the
performance of the Health Center agent in several ways.

Monitored Application: Reducing the amount of data collected

You can further minimize the agent resource usage by reducing the amount of data
collected. The Health Center provides a low resource usage mode which can be
enabled by adding the option level=low to the Health Center command line. For
example:
-agentlib:healthcenter=level=low -Xtrace:output=perfmon.out

or
-Xhealthcenter:level=low

Health Center Client: Reducing the amount of data collected

Collecting less data also reduces the memory footprint of the Health Center client.
For related information about collecting less data, see “Controlling the amount of
data generated” on page 207.

Health Center Client: Reducing the amount of data displayed

The Health Center stores a configurable amount of historical data. Storing less
historical data reduces the memory footprint of the Health Center and improves
performance. To configure the age at which data is discarded and how often the
Health Center deletes old data, modify the data storage settings as described in
“Saving data” on page 208.

234 WebSphere Real Time V2 for Linux: User Guide

Chapter 9. Reference

This set of topics lists the options and class libraries that can be used with
WebSphere Real Time for Linux

Real Time specific options
There are a number of command line options that are specific to WebSphere Real
Time for Linux.

Specifying command-line options
Although the command line is the traditional way to specify command-line
options, you can pass options to the JVM in other ways.

Use only single or double quotation marks for command-line options when
explicitly directed to do so for the option in question. Single and double quotation
marks have different meanings on different platforms, operating systems, and
shells. Do not use '-X<option>' or "-X<option>". Instead, you must use
-X<option>. For example, do not use '-Xmx500m' and "-Xmx500m". Write this option
as -Xmx500m.

These precedence rules (in descending order) apply to specifying options:
1. Command line.

For example, java -X<option> MyClass

2. A file containing a list of options, specified using the –Xoptionsfile option on
the command line. For example, java -Xoptionsfile=myoptionfile.txt
MyClass

In the options file, specify each option on a new line; you can use the '\'
character as a continuation character if you want a single option to span
multiple lines. Use the '#' character to define comment lines. You cannot specify
-classpath in an options file. Here is an example of an options file:
#My options file
-X<option1>
-X<option2>=\
<value1>,\
<value2>
-D<sysprop1>=<value1>

3. IBM_JAVA_OPTIONS environment variable. You can set command-line
options using this environment variable. The options that you specify with this
environment variable are added to the command line when a JVM starts in that
environment.
For example, set IBM_JAVA_OPTIONS=-X<option1> -X<option2>=<value1>

Standard options
The definitions for the standard options.

-agentlib:<libname>[=<options>]
Loads native agent library <libname>; for example -agentlib:hprof. For
more information, specify -agentlib:jdwp=help and -agentlib:hprof=help
on the command line.

© Copyright IBM Corp. 2003, 2010 235

-agentpath:libname[=<options>]
Loads native agent library by full path name.

-assert Prints help on assert-related options.

-cp or -classpath <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath and
-cp are not used and CLASSPATH is not set, the user classpath is, by
default, the current directory (.).

-D<property_name>=<value>
Sets a system property.

-help or -?
Prints a usage message.

-javaagent:<jarpath>[=<options>]
Loads Java programming language agent. For more information, see the
java.lang.instrument API documentation.

-jre-restrict-search
Includes user private JREs in the version search.

-no-jre-restrict-search
Excludes user private JREs in the version search.

-showversion
Prints product version and continues.

-verbose:[class,gc,dynload,sizes,stack,jni]
Enables verbose output.

-verbose:class
Writes an entry to stderr for each class that is loaded.

-verbose:gc
See “Using verbose:gc information” on page 20.

-verbose:dynload
Provides detailed information as each class is loaded by the JVM,
including:
v The class name and package
v For class files that were in a .jar file, the name and directory

path of the .jar
v Details of the size of the class and the time taken to load the

class

The data is written out to stderr. An example of the output follows:
<Loaded java/lang/String from /myjdk/sdk/jre/lib/i386/softrealtime/jclSC160/vm.jar>
<Class size 17258; ROM size 21080; debug size 0>
<Read time 27368 usec; Load time 782 usec; Translate time 927 usec>

Note: Classes loaded from the shared class cache do not appear in
-verbose:dynload output. Use -verbose:class for information about
these classes.

-verbose:sizes
Writes information to stderr describing the amount of memory
used for the stacks and heaps in the JVM

-verbose:stack
Writes information to stderr describing Java and C stack usage.

236 WebSphere Real Time V2 for Linux: User Guide

-verbose:jni
Writes information to stderr describing the JNI services called by
the application and JVM.

-version
Prints out version information for the non-real-time mode.

-version:<value>
Requires the specified version to run.

-X Prints help on nonstandard options.

Nonstandard garbage collection options
These -X options are used with garbage collection and are nonstandard and subject
to change without notice.

These options are grouped to show those that can be used with WebSphere Real
Time for Linux, standard non-real-time mode, and with both Metronome Garbage
Collector and WebSphere Real Time for Linux.

Metronome Garbage Collector options
The definitions of the Metronome Garbage Collector options.

-Xgc:synchronousGCOnOOM | -Xgc:nosynchronousGCOnOOM
One occasion when garbage collection occurs is when the heap runs out of
memory. If there is no more free space in the heap, using
-Xgc:synchronousGCOnOOM stops your application while garbage
collection removes unused objects. If free space runs out again, consider
decreasing the target utilization to allow garbage collection more time to
complete. Setting -Xgc:nosynchronousGCOnOOM implies that when heap
memory is full your application stops and issues an out-of-memory
message. The default is -Xgc:synchronousGCOnOOM.

-Xnoclassgc
Disables class garbage collection. This option switches off garbage
collection of storage associated with Java classes that are no longer being
used by the JVM. The default behavior is -Xnoclassgc.

-Xgc:targetUtilization=N
Sets the application utilization to N%; the Garbage Collector attempts to
use at most (100-N)% of each time interval. Reasonable values are in the
range of 50-80%. Applications with low allocation rates might be able to
run at 90%. The default is 70%.

This example shows the maximum size of the heap memory is 30 MB. The
garbage collector attempts to use 25% of each time interval because the
target utilization for the application is 75%.
java -Xgcpolicy:metronome -Xmx30m -Xgc:targetUtilization=75 Test

-Xgc:threads=N
Specifies the number of GC threads to run. The default is the number of
processor cores available to the process. The maximum value you can
specify is the number of processors available to the operating system.

-Xgc:verboseGCCycleTime=N
N is the time in milliseconds that the summaries should be dumped.

Note: The cycle time does not mean that the summary is dumped
precisely at that time, but rather when the last GC quanta or heartbeat that
passes this time criteria.

Chapter 9. Reference 237

-Xmx<size>
Specifies the Java heap size. Unlike other garbage collection strategies, the
real-time Metronome GC does not support heap expansion. There is not an
initial or maximum heap size option. You can specify only the maximum
heap size.

Related concepts

Chapter 4, “Using the Metronome Garbage Collector,” on page 19
Metronome Garbage Collector replaces the standard Garbage Collector in
WebSphere Real Time for Linux.
“Introduction to the Metronome Garbage Collector” on page 19
The benefit of the Metronome Garbage Collector is that the time it takes is more
predictable and garbage collection can take place at set intervals over a period of
time.
“Using verbose:gc information” on page 20
You can use the -verbose:gc option with the -Xgc:verboseGCCycleTime=N option
to write information to the console about Metronome Garbage Collector activity.
Not all XML properties in the -verbose:gc output from the standard JVM are
created or apply to the output of Metronome Garbage Collector.

Other nonstandard options
These -X options are nonstandard and subject to change without notice.

For options that take <size> parameter, you should suffix the number with "k" or
"K" to indicate kilobytes, "m" or "M" to indicate megabytes, or "g" or "G" to
indicate gigabytes.

-Xaot[:<suboption>,suboption,...]
Enables the AOT compiler if -Xshareclasses is also present. For details of
the suboptions, see the Diagnostics Guide. See also -Xnoaot. By default, the
AOT compiler is enabled, but it is only active in conjunction with
-Xshareclasses.

-Xargencoding
Allows you to put Unicode escape sequences in the argument list. This
option is set to off by default.

-Xbootclasspath:<directories and .zip or .jar files separated by : >
Sets the search path for bootstrap classes and resources. The default is to
search for bootstrap classes and resources in the internal VM directories
and .jar files.

-Xbootclasspath/a:<directories and .zip or .jar files separated by : >
Appends the specified directories, .zip, or .jar files to the end of bootstrap
class path. The default is to search for bootstrap classes and resources in
the internal VM directories and .jar files.

-Xbootclasspath/p:<directories and .zip or .jar files separated by : >
Prepends the specified directories, .zip, or .jar files to the front of the
bootstrap class path. Do not deploy applications that use the
-Xbootclasspath: or -Xbootclasspath/p: option to override a class in the
standard API, because such a deployment contravenes the Java 2 Runtime
Environment binary code license. The default is to search for bootstrap
classes and resources in the internal VM directories and .jar files.

-Xcheck:jni
Performs additional checks for JNI functions. You can also use
-Xrunjnichk. By default, no checking is performed.

238 WebSphere Real Time V2 for Linux: User Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

-Xcheck:nabounds
Performs additional checks for JNI array operations. You can also use
-Xrunjnichk. By default, no checking is performed.

-Xcodecache<size>
Sets the unit size of which memory blocks are allocated to store native
code of compiled Java methods. An appropriate size can be chosen for the
application being run. By default, this is selected internally according to
the CPU architecture and the capability of your system.

-Xcompressedrefs
(64-bit only) Uses 32-bit values for references.

-Xnocompressedrefs
(64-bit only) Uses 64-bit values for references. From WebSphere Real Time
for Linux V2 SR3, the 64-bit JVM uses compressed references. If you use
this option the JVM will not start.

-Xdbg:<options>
Loads debugging libraries to support the remote debugging of
applications. Specifying -Xrunjdwp provides the same support. By default,
the debugging libraries are not loaded, and the VM instance is not enabled
for debug.

-Xdbginfo:<path to symbol file>
Loads and passes options to the debug information server. By default, the
debug information server is disabled.

-Xdisablejavadump
Turns off javadump generation on errors and signals. By default, javadump
generation is enabled.

-Xfuture
Turns on strict class-file format checks. Use this flag when you are
developing new code because stricter checks will become the default in
future releases. By default, strict format checks are disabled.

-Xint Makes the JVM use only the Interpreter, disabling the Just-In-Time (JIT)
compiler. By default, the JIT compiler is enabled.

-Xiss<size>
Sets the initial Java thread stack size. 2 KB by default.

-Xjit[:<suboption>,suboption,...]
Enables the JIT. For details of the suboptions, see theDiagnostics Guide. See
also -Xnojit. By default, the JIT is enabled.

-Xlinenumbers
Displays line numbers in stack traces, for debugging. See also
-Xnolinenumbers. By default, line numbers are on.

-Xmca<size>
Sets the expansion step for the memory allocated to store the RAM portion
of loaded classes. Each time more memory is required to store classes in
RAM, the allocated memory is increased by this amount. By default, the
expansion step is 32 KB.

-Xmco<size>
Sets the expansion step for the memory allocated to store the ROM portion
of loaded classes. Each time more memory is required to store classes in
ROM, the allocated memory is increased by this amount. By default, the
expansion step is 128 KB.

Chapter 9. Reference 239

|
|

|
|
|
|

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

-Xmso<size>
Sets the C stack size for forked Java threads. By default, this option is set
to 32 KB on 32-bit platforms and 256 KB on 64-bit platforms.

-Xmx<size>
Sets maximum Java heap size. By default, this option is set internally
according to your system's capability.

-Xnoaot
Disables the AOT (Ahead-of-time) compiler. See also -Xaot. By default, the
AOT compiler is enabled, but it is only active in conjunction with
-Xshareclasses.

-Xnojit
Disables the JIT compiler. See also -Xjit. By default, the JIT compiler is
enabled.

-Xnolinenumbers
Disables the line numbers for debugging. See also -Xlinenumbers. By
default, line number are on.

-Xnosigcatch
Disables JVM signal handling code. See also -Xsigcatch. By default, signal
handling is enabled.

-Xnosigchain
Disables signal handler chaining. See also -Xsigchain. By default, the signal
handler chaining is enabled.

-Xoptionsfile=<file>
Specifies a file that contains JVM options and defines. By default, no
option file is used.

-Xoss<size>
Sets the Java stack size and C stack size for any thread. This option is
provided for compatibility and is equivalent to setting both -Xss and
-Xmso to the specified value.

-Xquickstart
Improves startup time by delaying JIT compilation and optimizations. By
default, quickstart is disabled and there is no delay in JIT compilation.

-Xrdbginfo:<host>:<port>
Loads and passes options to the remote debug information server. By
default, the remote debug information server is disabled.

-Xrealtime
Runs the JVM in a real-time mode. In particular, it will run with
-Xgcpolicy:metronome

-Xrs Disables signal handling in the JVM. Setting -Xrs prevents the Java runtime
from handling any internally or externally generated signals such as
SIGSEGV and SIGABRT. Any signals raised are handled by the default
operating system handlers. For more information on how the VM makes
full use of operating system signals, see the Diagnostics Guide.

-Xrun<library name>[:options]
Loads helper libraries. To load multiple libraries, specify it more than once
on the command line. Examples of these libraries are:

-Xrunhprof[:help] | [:<option>=<value>, ...]
Performs heap, CPU, or monitor profiling. For more information,
see the Diagnostics Guide.

240 WebSphere Real Time V2 for Linux: User Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

-Xrunjdwp[:help] | [:<option>=<value>, ...]
Loads debugging libraries to support the remote debugging of
applications. This is the same as -Xdbg. For more information, see
the Diagnostics Guide.

-Xrunjnichk[:help] | [:<option>=<value>, ...]
Performs additional checks for JNI functions, to trace errors in
native programs that access the JVM using JNI. For more
information, see the Diagnostics Guide.

-Xscmx<size>[k|m|g]
For details of -Xscmx, see Class data sharing command-line options.

-Xsigcatch
Enables VM signal handling code. See also -Xnosigcatch. By default, signal
handling is enabled

-Xsigchain
Enables signal handler chaining. See also -Xnosigchain. By default, signal
handler chaining is enabled.

-Xsoftrefthreshold<number>
Sets the number of GCs after which a soft reference will be cleared if its
referent has not been marked. The default is 3, meaning that on the third
GC where the referent is not marked the soft reference will be cleared.

-Xss<size>
Sets the maximum Java stack size for any thread. By default, this option is
set to 256 KB. For more information, see the Diagnostics Guide.

-Xthr:<options>
Sets the threading options.

-Xverify
Enables strict class checking for every class that is loaded. By default, strict
class checking is disabled.

-Xverify:none
Disables strict class checking. By default, strict class checking is disabled.

System properties
System properties are available to applications, and help provide information about
the runtime environment.

com.ibm.jvm.realtime
This property enables Java applications to determine if they are running
within a WebSphere Real Time for Linux environment.

If your application is running within the IBM WebSphere Real Time for RT
Linux runtime, and was started with the -Xrealtime option, the
com.ibm.jvm.realtime property has the value “hard”.

If your application is running within the IBM WebSphere Real Time for RT
Linux runtime, but was not started with the -Xrealtime option, the
com.ibm.jvm.realtime property is not set.

If your application is running within the IBM WebSphere Real Time
runtime, the com.ibm.jvm.realtime property has the value “soft”.

Chapter 9. Reference 241

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

Default settings for the JVM
Default settings apply to the Real Time JVM when no changes are made to the
environment that the JVM runs in. Common settings are shown for reference.

Default settings can be changed using environment variables or command-line
parameters at JVM startup. The table shows some of the common JVM settings.
The last column indicates how you can change the behavior, where the following
keys apply:
v e - setting controlled by environment variable only
v c - setting controlled by command-line parameter only
v ec - setting controlled by both environment variable and command-line

parameter, with command-line parameter taking precedence.

The information is provided as a quick reference and is not comprehensive.

JVM setting Default Setting
affected by

Javadumps Enabled ec

Javadumps on out of memory Enabled ec

Heapdumps Disabled ec

Heapdumps on out of memory Enabled ec

Sysdumps Enabled ec

Where dump files are produced Current directory ec

Verbose output Disabled c

Boot classpath search Disabled c

JNI checks Disabled c

Remote debugging Disabled c

Strict conformancy checks Disabled c

Quickstart Disabled c

Remote debug info server Disabled c

Reduced signalling Disabled c

Signal handler chaining Enabled c

Classpath Not set ec

Class data sharing Disabled c

Accessibility support Enabled e

JIT compiler Enabled ec

AOT compiler (AOT is not used by the JVM unless
shared classes are also enabled)

Enabled c

JIT debug options Disabled c

Java2D max size of fonts with algorithmic bold 14 point e

Java2D use rendered bitmaps in scalable fonts Enabled e

Java2D freetype font rasterizing Enabled e

Java2D use AWT fonts Disabled e

Default locale None e

Time to wait before starting plug-in zero e

242 WebSphere Real Time V2 for Linux: User Guide

JVM setting Default Setting
affected by

Temporary directory /tmp e

Plug-in redirection None e

IM switching Disabled e

IM modifiers Disabled e

Thread model N/A e

Initial stack size for Java Threads 32-bit. Use:
-Xiss<size>

2 KB c

Maximum stack size for Java Threads 32-bit. Use:
-Xss<size>

256 KB c

Stack size for OS Threads 32-bit. Use -Xmso<size> 256 KB c

Initial heap size. Use -Xms<size> 64 MB c

Maximum Java heap size. Use -Xmx<size> Half the available
memory with a
minimum of 16
MB and a
maximum of 512
MB

c

Target time interval utilization for an application.
The Garbage collector attempts to use the remainder.
Use -Xgc:targetUtilization=<percentage>

70% c

The number of garbage collector threads to run. Use
-Xgc:threads=<value>

The number of
processor cores
available to the
process.

c

Note: “available memory” is the smallest of real (physical) memory and the
RLIMIT_AS value.

Chapter 9. Reference 243

244 WebSphere Real Time V2 for Linux: User Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2010 245

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
v JIMMAIL@uk.ibm.com [Hursley Java Technology Center (JTC) contact]

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at http://www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Intel and Itanium are trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

246 WebSphere Real Time V2 for Linux: User Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of
others.

Notices 247

248 WebSphere Real Time V2 for Linux: User Guide

Index

Special characters
-? 235
-agentlib: 235
-agentpath: 235
-assert 235
-classpath 235
-cp 235
-D 235
-dump 106
-help 235
-J-Djavac.dump.stack=1 55
-javaagent: 235
-jre-restrict-search 235
-no-jre-restrict-search 235
-showversion 235
-verbose: 235
-verbose:gc option 21
-version: 235
-X 235
-Xdebug 3
-Xgc:immortalMemorySize 237
-Xgc:nosynchronousGCOnOOM 237
-Xgc:noSynchronousGCOnOOM

option 25
-Xgc:scopedMemoryMaximumSize 237
-Xgc:synchronousGCOnOOM 237
-Xgc:synchronousGCOnOOM option 25
-Xgc:targetUtilization 237
-Xgc:threads 237
-Xgc:verboseGCCycleTime=N 237
-Xgc:verboseGCCycleTime=N option 21
-Xmx 29, 237
-Xnojit 3
-Xshareclasses 3
-XsynchronousGCOnOOM 29
-Xtrace 55
.dat files 140
*.nix platforms

font utilities 67

A
alarm thread

metronome garbage collector 19
AOT

disabling 150
application profiling, Linux 49
application trace 141

activating and deactivating
tracepoints 138

example 143
printf specifiers 143
registering 141
suspend or resume 138
trace api 138
trace buffer snapshot 138
tracepoints 142
using at runtime 144

B
BAD_OPERATION 56
BAD_PARAM 56
bidirectional GIOP, ORB limitation 55
buffers

snapping 120
trace 120

C
cache housekeeping

shared classes 161
cache naming

shared classes 160
cache performance

shared classes 163
cache problems

shared classes 179, 182
class data sharing 4
class GC

shared classes 165
class records in a heapdump 101
class unloading

metronome 19
classic (text) heapdump file format

heapdumps 100
CLASSPATH

setting 9
Cleaning up temporary files 228
client side, ORB

identifying 61
collecting data from a fault condition

Linux 49, 51
core files 49
determining the operating

environment 50
proc file system 51
producing Javadumps 49
producing system dumps 49
sending information to Java

Support 51
strace, ltrace, and mtrace 51
using system logs 50

collection threads
metronome garbage collector 19

com.ibm.CORBA.CommTrace 55
com.ibm.CORBA.Debug 55
com.ibm.CORBA.Debug.Output 55
com.ibm.CORBA.LocateRequestTimeout 63
com.ibm.CORBA.RequestTimeout 63
comm trace , ORB 60
COMM_FAILURE 56
compatibility between service releases

shared classes 165, 166
compilation failures, JIT 154
COMPLETED_MAYBE 57
COMPLETED_NO 57
COMPLETED_YES 57
completion status, ORB 57

concurrent access
shared classes 165

console dumps 74
core dump 103

defaults 103
overview 103

core files
Linux 37

core files, Linux 49
CPU usage, Linux 47
crashes

Linux 45

D
DATA_CONVERSION 56
deadlocks 91
debug properties, ORB 55

com.ibm.CORBA.CommTrace 55
com.ibm.CORBA.Debug 55
com.ibm.CORBA.Debug.Output 55

debugging performance problem, Linux
JIT compilation 49
JVM heap sizing 48

debugging performance problem, Linuxs
application profiling 49

debugging performance problems, Linux
CPU usage 47
finding the bottleneck 46
memory usage 47
network problems 48

debugging techniques, Linux
ldd command 41
ps command 39

default settings, JVM 242
defaults

core dump 103
deploying shared classes 160
description string, ORB 59
determining the operating environment,

Linux 50
df command, Linux 50
Diagnostics Collector 155
disabling the AOT compiler 150
disabling the JIT compiler 150
DTFJ

counting threads example 194
diagnostics 190
example of the interface 191
interface diagram 193
working with a dump 191, 192

dump
core 103

defaults 103
overview 103

signals 84
dump agents

console dumps 74
default 82
environment variables 83
events 77

© Copyright IBM Corp. 2003, 2010 249

dump agents (continued)
filters 78
heapdumps 76
Java dumps 75
removing 83
snap traces 76
system dumps 75
tool option 75

dump extractor
Linux 39

dump viewer 102, 104
analyzing dumps 111
example session 111
problems to tackle with 106

dynamic updates
shared classes 170

E
environment variables

dump agents 83
heapdumps 99
javadumps 97

environment, determining
Linux 50

df command 50
free command 50
lsof command 50
ps command 50
top command 50
uname -a command 50
vmstat command 51

events
dump agents 77

example of real method trace 149
examples of method trace 148
exceptions, ORB 56

completion status and minor
codes 57

system 56
BAD_OPERATION 56
BAD_PARAM 56
COMM_FAILURE 56
DATA_CONVERSION 56
MARSHAL 56
NO_IMPLEMENT 56
UNKNOWN 56

user 56

F
failing method, JIT 152
file header, Javadump 88
finding classes

shared classes 171
finding the bottleneck, Linux 46
first steps in problem determination 35
floating stacks limitations, Linux 52
font limitations, Linux 52
fonts, NLS 66

common problems 67
installed 67
properties 66
utilities

*.nix platforms 67

fragmentation
ORB 54

free command, Linux 50

G
garbage collection

metronome 19
real time 19
verbose, heap information 99

gdb 42
glibc limitations, Linux 52
growing classpaths

shared classes 165

H
hanging, ORB 63

com.ibm.CORBA.LocateRequestTimeout 63
com.ibm.CORBA.RequestTimeout 63

hardware prerequisites 7
header record in a heapdump 100
heap, verbose GC 99
heapdump

Linux 38
Heapdump 98

enabling 98
environment variables 99
text (classic) Heapdump file

format 100
heapdumps 76

I
immortal memory 19
initialization problems

shared classes 180
installation 7
installing 8

J
Java archive and compressed files

shared classes 163
Java dumps 75
Java Helper API

shared classes 172
JAVA_DUMP_OPTS

default dump agents 82
parsing 84

Javadump 86
enabling 86
environment variables 97
file header, gpinfo 88
file header, title 88
interpreting 87
Linux 38
Linux, producing 49
locks, monitors, and deadlocks

(LOCKS) 91
storage management 90
system properties 88
tags 87
threads and stack trace

(THREADS) 92, 94

Javadump (continued)
triggering 86

jdmpview 102
example session 111

jdmpview -Xrealtime 104
jextract 104

jextract 104
JIT

compilation failures, identifying 154
disabling 150
idle 155
locating the failing method 152
ORB-connected problem 54
problem determination 150
selectively disabling 151
short-running applications 155

JIT compilation
Linux 49

JVM dump initiation
locations 85

JVM heap sizing
Linux 48

JVMTI
diagnostics 183, 184, 185, 186

K
known limitations, Linux 51

floating stacks limitations 52
font limitations 52
glibc limitations 52
threads as processes 51

L
ldd command 41
limitations

metronome 25
limitations, Linux 51

floating stacks limitations 52
font limitations 52
glibc limitations 52
threads as processes 51

Linux
collecting data from a fault

condition 49, 51
core files 49
determining the operating

environment 50
proc file system 51
producing Javadumps 49
producing system dumps 49
sending information to Java

Support 51
strace, ltrace, and mtrace 51
using system logs 50

core files 37
crashes, diagnosing 45
debugging commands

gdb 42
ltrace tool 42
mtrace tool 42
strace tool 41
tracing tools 41

debugging hangs 46
debugging memory leaks 46

250 WebSphere Real Time V2 for Linux: User Guide

Linux (continued)
debugging performance problems 46

application profiling 49
CPU usage 47
finding the bottleneck 46
JIT compilation 49
JVM heap sizing 48
memory usage 47
network problems 48

debugging techniques 38
known limitations 51

floating stacks limitations 52
font limitations 52
glibc limitations 52
threads as processes 51

ldd command 41
ltrace 51
mtrace 51
nm command 39
objdump command 39
problem determination 36
ps command 39
setting up and checking the

environment 37
starting heapdumps 38
starting Javadumps 38
strace 51
top command 40
tracing tools 41
using system dumps 39
using system logs 39
using the dump extractor 39
vmstat command 40
working directory 37

locating the failing method, JIT 152
locks, monitors, and deadlocks (LOCKS),

Javadump 91
lsof command, Linux 50
ltrace, Linux 51

M
MARSHAL 56
Memory management,

understanding 32
memory usage, Linux 47
message trace , ORB 59
method trace 144

examples 148
real example 149
running with 144

metronome
limitations 25
time-based collection 19

metronome class unloading 19
metronome garbage collection 19
metronome garbage collector

alarm thread 19
collection threads 19

minor codes, ORB 57
modification contexts

shared classes 168
monitors, Javadump 91
mtrace, Linux 51

N
network problems, Linux 48
NLS

font properties 66
fonts 66
installed fonts 67
problem determination 66

NO_IMPLEMENT 56

O
object records in a heapdump 100
operating system 7
options

-verbose:gc 21
-Xgc:immortalMemorySize 237
-Xgc:nosynchronousGCOnOOM 237
-Xgc:noSynchronousGCOnOOM 25
-Xgc:scopedMemoryMaximumSize 237
-Xgc:synchronousGCOnOOM 25, 237
-Xgc:targetUtilization 237
-Xgc:threads 237
-Xgc:verboseGCCycleTime=N 21, 237
-Xmx 237

ORB
bidirectional GIOP limitation 55
common problems 62

client and server running, not
naming service 64

com.ibm.CORBA.LocateRequestTimeout 63
com.ibm.CORBA.RequestTimeout 63
hanging 63
running the client with client

unplugged 64
running the client without

server 63
completion status and minor

codes 57
component, what it contains 54
debug properties 55

com.ibm.CORBA.CommTrace 55
com.ibm.CORBA.Debug 55
com.ibm.CORBA.Debug.Output 55

debugging 53
diagnostic tools

-J-Djavac.dump.stack=1 55
-Xtrace 55

exceptions 56
identifying a problem 54

fragmentation 54
JIT problem 54
ORB versions 54
platform-dependent problem 54
what the ORB component

contains 54
security permissions 57
service: collecting data 65

preliminary tests 65
stack trace 58

description string 59
system exceptions 56

BAD_OPERATION 56
BAD_PARAM 56
COMM_FAILURE 56
DATA_CONVERSION 56
MARSHAL 56

ORB (continued)
system exceptions (continued)

NO_IMPLEMENT 56
UNKNOWN 56

traces 59
client or server 61
comm 60
message 59
service contexts 62

user exceptions 56
versions 54

OSGi ClassLoading Framework
shared classes 183

OutOfMemoryError 25, 29

P
packaging 7
PATH

setting 9
performance problems, debugging

Linux
application profiling 49
CPU usage 47
finding the bottleneck 46
JIT compilation 49
JVM heap sizing 48
memory usage 47
network problems 48

platform-dependent problem, ORB 54
policies 14
power management 121
preliminary tests for collecting data,

ORB 65
printAllStats utility

shared classes 178
printStats utility

shared classes 176
priorities 14
priority scheduler 13, 15
problems, ORB 62

hanging 63
proc file system, Linux 51
producing Javadumps, Linux 49
producing system dumps, Linux 49
ps command, Linux 50

R
real-time garbage collection 19
redeeming stale classes

shared classes 172
ReportEnv

Linux 37
runtime bytecode modification

shared classes 167

S
Safemode

shared classes 169
sample application 27
SCHED_FIFO 13, 14, 15
SCHED_OTHER 13, 14, 15
SCHED_RR 13, 14, 15

Index 251

scheduling policies
SCHED_FIFO 13, 14, 15
SCHED_OTHER 13, 14, 15
SCHED_RR 13, 14, 15

scoped memory 19
security permissions for the ORB 57
see also jdmpview 102
selectively disabling the JIT 151
sending information to Java Support,

Linux 51
server side, ORB

identifying 61
service contexts, ORB 62
service: collecting data, ORB 65

preliminary tests 65
settings, default (JVM) 242
shared classes

cache housekeeping 161
cache naming 160
cache performance 163
cache problems 179, 182
class GC 165
compatibility between service

releases 165, 166
concurrent access 165
deploying 160
diagnostics 160
diagnostics output 175
dynamic updates 170
finding classes 171
growing classpaths 165
initialization problems 180
Java archive and compressed

files 163
Java Helper API 172
modification contexts 168
not filling the cache 163
OSGi ClassLoading Framework 183
printAllStats utility 178
printStats utility 176
problem debugging 179
redeeming stale classes 172
runtime bytecode modification 167
Safemode 169
SharedClassHelper partitions 168
stale classes 171
storing classes 171
trace 179
verbose output 175
verboseHelper output 176
verboseIO output 175
verification problems 182

SharedClassHelper partitions
shared classes 168

short-running applications
JIT 155

snap traces 76
software prerequisites 7
stack trace, ORB 58

description string 59
stale classes

shared classes 171
storage management, Javadump 90
storing classes

shared classes 171
strace, Linux 51
string (description), ORB 59

system dump 103
defaults 103
overview 103

System dump
Linux, producing 49

system dumps 75
Linux 39

system exceptions, ORB 56
BAD_OPERATION 56
BAD_PARAM 56
COMM_FAILURE 56
DATA_CONVERSION 56
MARSHAL 56
NO_IMPLEMENT 56
UNKNOWN 56

system logs 39
system logs, using (Linux) 50
system properties, Javadump 88

T
tags, Javadump 87
text (classic) heapdump file format

heapdumps 100
thread dispatching 13, 15
thread scheduling 13, 15
threads and stack trace (THREADS) 92,

94
threads as processes, Linux 51
time-based collection

metronome 19
tool option for dumps 75
tools, ReportEnv

Linux 37
top command, Linux 50
trace

.dat files 140
application trace 141
applications 118
controlling 122
default 119
default assertion tracing 120
default memory management

tracing 119
formatter 139

invoking 139
internal 118
Java applications and the JVM 118
methods 118
options

buffers 125
count 126
detailed descriptions 123
exception 126
exception.output 134
external 126
iprint 126
maximal 126
method 131
minimal 126
output 133
print 126
properties 124
resume 134
resumecount 135
specifying 123
suspend 136

trace (continued)
options (continued)

suspendcount 136
trigger 136

placing data into a file 121
external tracing 122
trace combinations 122
tracing to stderr 122

placing data into memory
buffers 120

snapping buffers 120
power management effect on

timers 121
shared classes 179
tracepoint ID 140

tracepoint specification 128
traces, ORB 59

client or server 61
comm 60
message 59
service contexts 62

tracing
Linux

ltrace tool 42
mtrace tool 42
strace tool 41

tracing tools
Linux 41

trailer record 1 in a heapdump 101
trailer record 2 in a heapdump 102
troubleshooting

metronome 20
type signatures 102

U
uname -a command, Linux 50
UNKNOWN 56
user exceptions, ORB 56
using dump agents 71
utilities

NLS fonts
*.nix platforms 67

V
verbose output

shared classes 175
verboseHelper output

shared classes 176
verboseIO output

shared classes 175
verification problems

shared classes 182
versions, ORB 54
vmstat command, Linux 51

W
work-based collection 19

252 WebSphere Real Time V2 for Linux: User Guide

����

Printed in USA

	Contents
	Figures
	Tables
	Preface
	Chapter 1. Introduction
	Overview of WebSphere Real Time for Linux
	What's new
	Benefits
	Considerations
	Performance considerations
	Class data sharing between JVMs

	Security considerations for the shared class cache

	Chapter 2. Installing WebSphere Real Time for Linux
	Installation files
	Hardware and software prerequisites
	Useful tools
	Unpacking the WebSphere Real Time for Linux gzipped tar file
	Setting the path
	Setting the classpath
	Testing your installation
	Viewing the online help

	Chapter 3. Thread scheduling and dispatching
	Regular Java thread priorities and policies
	Configuring the system to allow priority changes
	Launching secondary processes

	Chapter 4. Using the Metronome Garbage Collector
	Introduction to the Metronome Garbage Collector
	Troubleshooting the Metronome Garbage Collector
	Using verbose:gc information
	Metronome Garbage Collector behavior in out-of-memory conditions
	Metronome Garbage Collector behavior on explicit System.gc() calls

	Metronome Garbage Collector limitation

	Chapter 5. The sample real-time hash map
	Chapter 6. Troubleshooting OutOfMemory Errors
	Diagnosing OutOfMemoryErrors
	How the IBM JVM manages memory

	Chapter 7. Problem determination
	First steps in problem determination
	Problem determination
	Setting up and checking your Linux environment
	General debugging techniques
	Using the dump extractor
	Using system dump tools
	Examining process information
	ldd
	Tracing tools
	Debugging with gdb

	Diagnosing crashes
	Debugging hangs
	Debugging memory leaks
	Debugging performance problems
	Finding the bottleneck
	CPU usage
	Memory usage
	Network problems
	Sizing memory areas
	JIT compilation and performance
	Application profiling

	MustGather information for Linux
	Known limitations on Linux

	ORB problem determination
	Identifying an ORB problem
	Debug properties
	ORB exceptions
	Completion status and minor codes
	Java security permissions for the ORB
	Interpreting the stack trace
	Description string

	Interpreting ORB traces
	Message trace
	Comm traces
	Client or server
	Service contexts

	Common problems
	ORB application hangs
	Running the client without the server running before the client is started
	Client and server are running, but not naming service
	Running the client with MACHINE2 (client) unplugged from the network

	IBM ORB service: collecting data
	Preliminary tests

	NLS problem determination
	Overview of fonts
	Font utilities
	Common NLS problem and possible causes

	Attach API problem determination

	Chapter 8. Using diagnostic tools
	Using dump agents
	Using the -Xdump option
	Merging -Xdump agents

	Dump agents
	Console dumps
	System dumps
	Tool option
	Javadumps
	Heapdumps
	Snap traces

	Dump events
	Advanced control of dump agents
	exec option
	file option
	filter option
	opts option
	Priority option
	range option
	request option
	defaults option

	Dump agent tokens
	Default dump agents
	Removing dump agents
	Dump agent environment variables
	Signal mappings
	Dump agent default locations
	Disabling dump agents with -Xrs

	Using Javadump
	Enabling a Javadump
	Triggering a Javadump
	Interpreting a Javadump
	Javadump tags
	TITLE, GPINFO, and ENVINFO sections
	Storage Management (MEMINFO)
	Locks, monitors, and deadlocks (LOCKS)
	Threads and stack trace (THREADS)
	Stack backtrace
	Shared Classes (SHARED CLASSES)
	Classloaders and Classes (CLASSES)

	Environment variables and Javadump

	Using Heapdump
	Getting Heapdumps
	Enabling text formatted ("classic") Heapdumps

	Available tools for processing Heapdumps
	Using -Xverbose:gc to obtain heap information
	Environment variables and Heapdump
	Text (classic) Heapdump file format

	Using system dumps and the dump viewer
	Overview of system dumps
	System dump defaults
	Using the dump viewer
	Problems to tackle with the dump viewer
	Commands for use with jdmpview
	Example session
	jdmpview commands quick reference

	Tracing Java applications and the JVM
	What can be traced?
	Types of tracepoint
	Default tracing
	Where does the data go?
	Writing trace data to memory buffers
	Writing trace data to a file
	External tracing
	Tracing to stderr
	Trace combinations

	Controlling the trace
	Specifying trace options
	Detailed descriptions of trace options
	Using the Java API

	Using the trace formatter
	Determining the tracepoint ID of a tracepoint
	Application trace
	Implementing application trace
	Using application trace at runtime

	Using method trace
	Running with method trace
	Untraceable methods
	Examples of use
	Example of method trace output

	JIT and AOT problem determination
	Diagnosing a JIT or AOT problem
	Disabling the JIT or AOT compiler
	Selectively disabling the JIT compiler
	Locating the failing method
	Identifying JIT compilation failures

	Performance of short-running applications
	JVM behavior during idle periods

	The Diagnostics Collector
	Using the Diagnostics Collector
	Using the -Xdiagnosticscollector option
	Collecting diagnostics from Java runtime problems
	Verifying your Java diagnostics configuration
	Configuring the Diagnostics Collector
	Diagnostics Collector settings

	Known limitations

	Garbage Collector diagnostics
	Shared classes diagnostics
	Deploying shared classes
	Cache naming
	Cache access
	Cache housekeeping
	Cache performance
	Compatibility between service releases
	Nonpersistent shared cache cleanup

	Dealing with runtime bytecode modification
	Potential problems with runtime bytecode modification
	Modification contexts
	SharedClassHelper partitions
	Using the safemode option
	JVMTI redefinition and retransformation of classes
	Further considerations for runtime bytecode modification

	Understanding dynamic updates
	Using the Java Helper API
	SharedClassHelper API

	Understanding shared classes diagnostics output
	Verbose output
	VerboseIO output
	VerboseHelper output
	verboseAOT output
	printStats utility
	printAllStats utility

	Debugging problems with shared classes
	Using shared classes trace
	Why classes in the cache might not be found or stored
	Dealing with initialization problems
	Dealing with verification problems
	Dealing with cache problems

	Class sharing with OSGi ClassLoading framework

	Using the JVMTI
	IBM JVMTI extensions
	Sample JVMTI agent

	IBM JVMTI extensions - API reference

	Using the Diagnostic Tool Framework for Java
	Using the DTFJ interface
	DTFJ example application

	Using the IBM Monitoring and Diagnostic Tools for Java - Health Center
	Introduction
	Platform requirements
	Monitoring a running Java application
	Installing the Health Center agent
	Starting a Java application with the Health Center agent enabled
	Connecting to a Java application using the Health Center client
	Configuring WebSphere or Rational product environments
	Data available on connection to a running Java application
	Controlling the amount of data generated

	Saving data
	Opening files from disk
	Classes perspective
	Using the classes perspective
	Class references

	Environment perspective
	Environment references

	Garbage collection perspective
	Using the garbage collection perspective
	Garbage collection references

	I/O perspective
	Locking perspective
	Using the Locking perspective
	Resolving lock contention
	Locking references

	Native memory perspective
	Profiling perspective
	Method profiling
	Method profiling references

	WebSphere Real Time perspective
	Introduction to the WebSphere Real Time perspective
	Setting preferences for the WebSphere Real Time perspective
	Views within the WebSphere Real Time perspective
	Customizing the WebSphere Real Time perspective

	Troubleshooting
	Cannot connect to an application
	Cleaning up temporary files
	Data disappears
	GUI unresponsive
	Hangs
	Monitored application runs out of native memory or crashes
	No data present
	No I/O information present
	No method names showing
	Only the first character of file names showing
	Out of memory errors and ISA 4.1
	Printing
	Showing the Status perspective
	Problems when using WebSphere Application Server - Community Edition

	Resetting displayed data
	Cropping data
	Controlling the units
	Filtering
	Performance hints

	Chapter 9. Reference
	Real Time specific options
	Specifying command-line options
	Standard options
	Nonstandard garbage collection options
	Metronome Garbage Collector options

	Other nonstandard options

	System properties
	Default settings for the JVM

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

